Advanced v0.7

## Fusion Family of Mixed-Signal Flash FPGAs with Optional Soft ARM ${ }^{\circledR}$ Support

®

FlashLock

## Features and Benefits

## High Performance Reprogrammable

Flash Technology

- Advanced 130-nm, 7-Layer Metal, Flash-Based CMOS Process
- Nonvolatile, Retains Program When Powered-Off
- Live at Power-Up (LAPU) Single-Chip Solution
- 350 MHz System Performance

Embedded Flash Memory

- User Flash Memory - 2 Mbits to 8 Mbits
- Configurable 8-, 16-, or 32-Bit Datapath
- 10 ns Access in Read-Ahead Mode
- 1 kbit of Additional FlashROM

Integrated A/D Converter (ADC) and Analog I/O

- Up to 12 bit resolution and Up to 600 ksps
- Internal 2.56 V or External Reference Voltage
- ADC: Up to 30 Scalable Analog Input Channels
- High Voltage Input Tolerance $\pm 12 \mathrm{~V}$
- Current Monitor and Temperature Monitor Blocks
- Up to 10 MOSFET Gate Driver Outputs
- P- and N-Channel Power MOSFET support
- Programmable 1, 3, 10, $30 \mu \mathrm{~A}$ and 25 mA Drive Strengths


## On-Chip Clocking Support

- Internal 100 MHz RC Oscillator (accurate to 1\%)
- Crystal Oscillator Support ( 32 kHz to 20 MHz )
- Programmable Real-Time Counter (RTC)
- 6 Clock Conditioning Circuits (CCCs) with 1 or 2 Integrated PLLs
- Phase Shift, Multiply/Divide, and Delay Capabilities


## - Frequency: Input ( $1.5-350 \mathrm{MHz}$ ), Output ( $0.75-350 \mathrm{MHz}$ )

## Low Power Consumption

- Single 3.3 V Power Supply with On-Chip 1.5 V Regulator
- Sleep and Standby Low Power Modes

In-System Programming (ISP) and Security

- Secure ISP with 128-Bit AES Via JTAG
- FlashLock ${ }^{\circledR}$ to Secure FPGA Contents


## Advanced Digital I/O

- $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.3 V Mixed-Voltage Operation
- Bank-Selectable I/O Voltages - Up to 5 Banks per Chip
- Single-Ended I/O Standards: LVTTL, LVCMOS $3.3 \mathrm{~V} / 2.5 \mathrm{~V} /$ $1.8 \mathrm{~V} / 1.5 \mathrm{~V}$, 3.3 V PCI / 3.3 V PCI-X and LVCMOS $2.5 \mathrm{~V} / 5.0 \mathrm{~V}$ Input
- Differential I/O Standards: LVPECL, LVDS, BLVDS, and M-LVDS
- Built-In I/O Registers
- 700 Mbps DDR Operation
- Hot-Swappable I/Os
- Programmable Output Slew Rate, Drive Strength, and Weak Pull-Up/Down Resistor
- Pin-Compatible Packages Across the Fusion Family

SRAMs and FIFOs

- Variable-Aspect-Ratio 4,608-Bit SRAM Blocks (x1, x2, x4, x9, and x18 organizations available)
- True Dual-Port SRAM (except x18)
- Programmable Embedded FIFO Control Logic

Soft ARM7™ Core Support in M7 Fusion Devices

- CoreMP7Sd (with debug) and CoreMP7S (without debug)

Table 1 • Fusion Family

| Fusion Devices |  | AFS090 | AFS250 | AFS600 | AFS1500 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ARM-Enabled Fusion Devices |  |  |  | M7AFS600 | M7AFS1500 |
| General Information | System Gates | 90,000 | 250,000 | 600,000 | 1,500,000 |
|  | Tiles (D-Flip-Flops) | 2,304 | 6,144 | 13,824 | 38,400 |
|  | Usable Tiles with CoreMP7S ${ }^{1}$ |  |  | 7,500 | 32,000 |
|  | Usable Tiles with CoreMP7Sd ${ }^{1}$ |  |  | 5,237 | 29,878 |
|  | Secure (AES) ISP | Yes | Yes | Yes | Yes |
|  | PLLs | 1 | 1 | 2 | 2 |
|  | Globals | 18 | 18 | 18 | 18 |
| Memory | Flash Memory Blocks (2 Mbits) | 1 | 1 | 2 | 4 |
|  | Total Flash Memory Bits | 2 M | 2 M | 4 M | 8 M |
|  | FlashROM Bits | 1 k | 1 k | 1 k | 1 k |
|  | RAM Blocks (4,608 bits) | 6 | 8 | 24 | 60 |
|  | RAM kbits | 27 | 36 | 108 | 270 |
| Analog and I/Os | Analog Quads | 5 | 6 | 10 | 10 |
|  | Analog Input Channels | 15 | 18 | 30 | 30 |
|  | Gate Driver Outputs | 5 | 6 | 10 | 10 |
|  | I/O Banks (+ JTAG) | 4 | 4 | 5 | 5 |
|  | Maximum Digital I/Os ${ }^{2}$ | 75 | 114 | 172 | 252 |
|  | Analog l/Os | 20 | 24 | 40 | 40 |

## Notes:

1. Refer to the CoreMP7 datasheet for more information.
2. Some debug tools require 10 digital I/Os for external connection.


Figure 1 • Fusion Device Architecture Overview (AFS600)

## Package I/Os: Single/Double-Ended (Analog)

| Fusion Devices | AFS090 | AFS250 | AFS600 | AFS1500 |
| :--- | :---: | :---: | :---: | :---: |
| ARM-Enabled Devices |  |  | M7AFS600 | M7AFS1500 |
| QN108 | $37 / 9(16)$ |  |  |  |
| QN180 | $60 / 16(20)$ | $65 / 15(24)$ |  |  |
| PQ208 |  | $93 / 26(24)$ | $95 / 46(40)$ | $119 / 58(40)$ |
| FG256 | $75 / 22(20)$ | $114 / 37(24)$ | $172 / 86(40)$ | $223 / 109(40)$ |
| FG484 |  |  |  | $252 / 126(40)$ |
| FG676 |  |  |  |  |

Note: All devices in the same package are pin compatible with the exception of the PQ208 package (AFS250 and AFS600).

## Product Ordering Codes

M7AFS600

Note: DC and switching characteristics for $-F$ speed grade targets based only on simulation. The characteristics provided for $-F$ speed grade are subject to change after establishing FPGA specifications. Some restrictions might be added and will be reflected in future revisions of this document. The -F speed grade is only supported in commercial temperature range.

Fusion Family of Mixed-Signal Flash FPGAs

## Temperature Grade Offerings

| Fusion Devices | AFS090 | AFS250 | AFS600 | AFS1500 |
| :--- | :---: | :---: | :---: | :---: |
| ARM-Enabled Devices |  |  | M7AFS600 | M7AFS1500 |
| QN108 | C, I | - | - | - |
| QN180 | C, I | C, I | - | - |
| PQ208 | - | C,I | C,I | - |
| FG256 | C,I | C,I | C,I | C, I |
| FG484 | - | - | C, I | C, I |
| FG676 | - | - | - | C,I |

Notes:

1. $\mathrm{C}=$ Commercial Temperature Range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Ambient
2. I = Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Ambient

## Speed Grade and Temperature Grade Matrix

|  | $\mathbf{- F}$ | $\mathbf{\text { Std }}$ | $\mathbf{- 1}$ | $\mathbf{- 2}$ |
| :--- | :---: | :---: | :---: | :---: |
| $C^{2}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $B^{3}$ | - | $\checkmark$ | $\checkmark$ | $\checkmark$ |

## Notes:

1. DC and switching characteristics for $-F$ speed grade targets based only on simulation. The characteristics provided for -F speed grade are subject to change after establishing FPGA specifications. Some restrictions might be added and will be reflected in future revisions of this document. The -F speed grade is only supported in commercial temperature range.
2. $\mathrm{C}=$ Commercial Temperature Range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Ambient
3. I = Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Ambient

Contact your local Actel representative for device availability (http://www.actel.com/contact/offices/index.html).

## Table of Contents

Introduction and Overview
Introduction ..... 1-1
General Description ..... 1-1
Unprecedented Integration ..... 1-3
Related Documents ..... 1-8
Device Architecture
Fusion Stack Architecture ..... 2-1
Core Architecture ..... 2-2
Clocking Resources ..... 2-18
Real-Time Counter System ..... 2-31
Embedded Memories ..... 2-37
Analog Block ..... 2-66
Analog Configuration MUX ..... 2-89
User I/Os ..... 2-95
Pin Descriptions ..... 2-168
Software Tools and Programming ..... 2-171
DC and Power Characteristics
General Specifications ..... 3-1
Calculating Power Dissipation ..... 3-7
Power Consumption ..... 3-21
Package Pin Assignments
108-Pin QFN ..... 4-1
180-Pin QFN ..... 4-3
208-Pin PQFP ..... 4-8
256-Pin FBGA ..... 4-13
484-Pin FBGA ..... 4-26
676-Pin FBGA ..... 4-32
Datasheet Information
List of Changes ..... 5-1
Datasheet Categories ..... 5-4
Export Administration Regulations (EAR) ..... 5-4

# Introduction and Overview 

## Introduction

The Actel Fusion ${ }^{\text {TM }}$ Programmable System Chip (PSC) satisfies the demand from system architects for a device that simplifies design and unleashes their creativity. As the world's first mixed-signal FPGA family, Fusion integrates mixed-signal analog, Flash memory, and FPGA fabric in a monolithic PSC. Actel Fusion devices enable designers to quickly move from concept to completed design, and then deliver feature-rich systems to market. This new technology takes advantage of the unique properties of Actel Flash-based FPGAs, including a highisolation, triple-well process, and the ability to support high-voltage transistors to meet the demanding requirements of mixed-signal system design.
Actel Fusion PSCs bring the benefits of programmable logic to many application areas, including power management, smart battery charging, clock generation and management, and motor control. Until now, these applications have only been implemented with costly and space-consuming discrete analog components or mixed-signal ASIC solutions. Actel Fusion PSCs present new capabilities for system development by allowing designers to integrate a wide range of functionality into a single device, while at the same time offering the flexibility of upgrades late in the manufacturing process or after the device is in the field. Actel Fusion devices provide an excellent alternative to costly and timeconsuming mixed-signal ASIC designs. In addition, when used in conjunction with the Actel 8051-based or ARMbased soft MCU core, the Actel Fusion technology represents the definitive PSC platform.
Flash-based Fusion devices are live at power-up. As soon as system power is applied and within normal operating specifications, Fusion devices are working. Fusion devices have a 128-bit Flash-based lock and industry-leading AES decryption, used to secure programmed intellectual property (IP) and configuration data. Actel Fusion devices are the most comprehensive single-chip analog and digital programmable logic solution available today.
To support this new ground-breaking technology, Actel has developed a series of major tool innovations to help maximize designer productivity. Implemented as extensions to the popular Actel Libero ${ }^{\circledR}$ Integrated Design Environment (IDE), these new tools will allow designers to easily instantiate and configure peripherals within a design, establish links between peripherals, create or import building blocks or reference designs, and perform hardware verification. This tools suite will
also add a comprehensive hardware/software debug capability as well as a suite of utilities to simplify development of embedded soft processor-based solutions.

## General Description

The Actel Fusion family, based on the highly successful ProASIC ${ }^{\circledR} 3$ and ProASIC3E Flash FPGA architecture, has been designed as a high-performance, programmable, mixed-signal platform. By combining an advanced Flash FPGA core with Flash memory blocks and analog peripherals, Fusion devices dramatically simplify system design, and as a result, dramatically reduce overall system cost and board space.
The state-of-the-art Flash memory technology offers high-density integrated Flash memory blocks, enabling savings in cost, power, and board area relative to external Flash solutions, while providing increased flexibility and performance. The Flash memory blocks and integrated analog peripherals enable true mixedmode programmable logic designs. Two examples include using an on-chip soft processor to implement a fully functional Flash MCU, or using high-speed FPGA logic to offer system and power supervisory capabilities. Live at power-up and capable of operating from a single 3.3 V supply, the Fusion family is ideally suited for system management and control applications.
The devices in the Fusion family are categorized by FPGA core density. Each family member contains many peripherals, including Flash memory blocks, analog to digital converter (ADC), high-drive outputs, both RC and crystal oscillators, and real-time counter (RTC). This provides the user with a high level of flexibility and integration to support a wide variety of mixed-signal applications. The Flash memory block capacity ranges from 2 Mbits to 8 Mbits. The integrated 12-bit ADC supports up to 30 independently configurable input channels. The on-chip crystal and RC oscillators work in conjunction with the integrated phase-locked loops (PLLs) to provide clocking support to the FPGA array and on-chip resources. In addition to supporting typical RTC uses such as watchdog timer, the Fusion RTC can control the on-chip voltage regulator to power down the device (FPGA fabric, Flash memory block, and ADC), enabling a low power standby mode.

## Fusion Family of Mixed-Signal Flash FPGAs

The Actel Fusion family offers revolutionary features, never before available in an FPGA. The nonvolatile Flash technology gives the Fusion family the advantage of being a secure, low power, single-chip solution that is live at power-up. Fusion is reprogrammable and offers time to market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.
The family has up to 1.5 M system gates, supported with up to 270 kbits of true dual-port SRAM, up to 8 Mbits of Flash memory, 1 kbit of user FlashROM, and up to 278 user I/Os. With integrated Flash memory, the Fusion family is the ultimate soft processor platform. The AFS600 and AFS1500 devices both support the Actel ARM7 core (CoreMP7). The ARM-enabled versions are identified with the M7 prefix as M7AFS600 and M7AFS1500.

## Flash Advantages

## Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, high performance, and ease of use. The Flash-based Fusion devices are live at power-up and do not need to be loaded from an external boot PROM. On-board security mechanisms prevent access to the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote insystem reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry standard AES algorithm, with MAC data authentication on-board the device. The Fusion family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the Fusion family a cost-effective ASIC replacement solution for applications in the consumer, networking and communications, computing, and avionics markets.

## Security

As the nonvolatile, Flash-based Fusion family requires no boot PROM, there is no vulnerable external bitstream. Fusion devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile, Flash programming can offer.
Fusion devices utilize a 128-bit Flash-based key lock and a separate AES key used to secure programmed intellectual property (IP) and configuration data. The FlashROM data in the Fusion devices can also be encrypted prior to loading. Additionally, the Flash memory blocks can be programmed during runtime using the industry-leading AES-128 block cipher encryption standard (FIPS Publication 192). The AES
standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the DES standard, which was adopted in 1977. Fusion devices have a built-in AES decryption engine and a Flash-based AES key that make Fusion devices the most comprehensive programmable logic device security solution available today. Fusion devices with AES-based security allow for secure remote field updates over public networks, such as the Internet, and ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves. As an additional security measure, the FPGA configuration data of a programmed Fusion device cannot be read back, although secure design verification is possible. During design, the user controls and defines both internal and external access to the Flash memory blocks.
Security, built into the FPGA fabric, is an inherent component of the Fusion family. The Flash cells are located beneath seven metal layers and many device design and layout techniques have been used to make invasive attacks extremely difficult. Fusion with FlashLock and AES security is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected, making secure remote ISP possible. A Fusion device provides the most impenetrable security for programmable logic designs.

## Single Chip

Flash-based FPGAs store the configuration information in on-chip Flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, Flash-based Fusion FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load the device configuration data. This reduces bill-of-materials costs and printed circuit board (PCB) area, and increases security and system reliability.

## Live at Power-Up

Flash-based Fusion devices are Level 0 live at power-up (LAPU). LAPU Fusion devices greatly simplify total system design and reduce total system cost by eliminating the need for Complex Programmable Logic Devices (CPLDs). The Fusion LAPU clocking (PLLs) replaces off-chip clocking resources. The Fusion mix of LAPU clocking and analog resources makes these devices an excellent choice for both system supervisor and system management functions. LAPU from a single 3.3 V source enables Fusion devices to initiate, control, and monitor multiple voltage supplies, while also providing system clocks. In addition, glitches and brownouts in system power will not corrupt the Fusion device Flash configuration. Unlike SRAMbased FPGAs, the device will not have to be reloaded when system power is restored. This enables reduction or complete removal of the expensive voltage monitor and
brownout detection devices from the PCB design. Flashbased Fusion devices simplify total system design and reduce cost and design risk, while increasing system reliability.

## Firm Errors

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. Another source of radiation-induced firm errors comes from alpha particles. For an alpha to cause a soft or firm error, its source must be in very close proximity to the affected circuit. The alpha source must be in the package molding compound or in the die itself. While low alpha molding compounds are being increasingly used, this helps reduce but does not entirely eliminate alpha-induced firm errors.
Firm errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not occur in Fusion Flashbased FPGAs. Once it is programmed, the Flash cell configuration element of Fusion FPGAs cannot be altered by high-energy neutrons and is therefore immune to errors from them.
Recoverable (or soft) errors occur in the user data SRAMs of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

## Low Power

Flash-based Fusion devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. With Fusion devices, there is no power-on current surge and no high current transition, both of which occur on many FPGAs.
Fusion devices also have low dynamic power consumption and support both low power standby mode and very low power sleep mode, offering further power savings.

## Advanced Flash Technology

The Fusion family offers many benefits, including nonvolatility and reprogrammability through an advanced Flash-based, 130-nm LVCMOS process with 7 layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant Flash switches allows very high logic utilization (much higher than competing SRAM technologies) without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

## Advanced Architecture

The proprietary Fusion architecture provides granularity comparable to standard-cell ASICs. The Fusion device consists of several distinct and programmable architectural features, including the following (Figure 1-1 on page 1-5):

- Embedded memories
- Flash memory blocks
- FlashROM
- SRAM and FIFO
- Clocking resources
- PLL and CCC
- RC oscillator
- Crystal oscillator
- No Glitch MUX (NGMUX)
- Digital I/Os with advanced I/O standards
- FPGA VersaTiles
- Analog components
- Analog-to-digital converter (ADC)
- Analog I/Os supporting voltage, current, and temperature monitoring
- 1.5 V on-board voltage regulator
- Real-time counter

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic lookup table (LUT) equivalent or a D-flip-flop or latch (with or without enable) by programming the appropriate Flash switch interconnections. This versatility allows efficient use of the FPGA fabric. The VersaTile capability is unique to the Actel families of Flash-based FPGAs. VersaTiles and larger functions are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.
In addition, extensive on-chip programming circuitry allows for rapid ( 3.3 V ) single-voltage programming of the Fusion devices via an IEEE 1532 JTAG interface.

## Unprecedented Integration

## Integrated Analog Blocks and Analog I/Os

Fusion devices offer a robust and flexible analog mixedsignal capability in addition to the high-performance Flash FPGA fabric and Flash memory block. The many built-in analog peripherals include a configurable 32:1 input analog multiplexer (MUX), up to 10 independent metal-oxide semiconductor field-effect transistor
(MOSFET) gate driver outputs, and a configurable ADC. The ADC supports 8 -, 10 -, and 12 -bit modes of operation with a cumulative sample rate up to 600 k samples per second (ksps), differential nonlinearity (DNL) < 1.0 LSB, and Total Unadjusted Error (TUE) of $\pm 4$ LSB in 10-bit mode. The TUE is used for characterization of the conversion error, and includes errors from all sources, such as offset and linearity. Internal bandgap circuitry offers $1 \%$ voltage reference accuracy with the flexibility of utilizing an external reference voltage. The ADC channel sampling sequence and sampling rate are programmable and implemented in the FPGA logic using Designer and Libero IDE software tool support.
Two channels of the 32-channel ADCMUX are dedicated. Channel 0 is connected internally to $\mathrm{V}_{\mathrm{CC}}$ and can be used to monitor core power supply. Channel 31 is connected to an internal temperature diode which can be used to monitor device temperature. The 30 remaining channels can be connected to external analog signals. The exact number of I/Os available for external connection signals is device-dependent (refer to Table 1 on page i for details).

With Fusion, Actel also introduces the Analog Quad I/O structure (Figure 1-1 on page 1-5). Each quad consists of three analog inputs and one gate driver. Each quad can be configured in various built-in circuit combinations, such as three pre-scaler circuits, three digital input circuits, a current monitor circuit, or a temperature monitor circuit. Each pre-scaler has multiple scaling factors programmed by FPGA signals to support a large range of analog inputs with positive or negative polarity. The input range for voltage signals is from -12 V to +12 V with full-scale output values from 0.125 V to 16 V . When the current monitor circuit is selected, two adjacent analog inputs measure the voltage drop across a small external sense resistor. Built-in operational amplifiers (op amps) amplify small voltage signals ( 2 mV sensitivity) for accurate current measurement. One analog input in each quad may be connected to an external temperature monitor diode and achieves detection accuracy of $\pm 2^{\circ} \mathrm{C}$ with calibration. In addition to the external temperature monitor diode(s), a Fusion device can monitor an internal temperature diode using dedicated channel 31 of the ADCMUX.
Figure 1-1 on page 1-5 illustrates a typical use of the Analog Quad I/O structure. The Analog Quad shown is configured to monitor and control an external power supply. The AV pad is measuring the source of the power supply. The AC pad is measuring the voltage drop across an external sense resistor in order to calculate current. The AG MOSFET gate driver pad turns the external MOSFET on and off. The AT pad is measuring the load side voltage level.
$\qquad$


Figure 1-1 • Analog Quad

## Embedded Memories

## Flash Memory Blocks

The Flash memory available in each Fusion device is composed of 1 to 4 Flash blocks, each 2 Mbits in density. Each block operates independently with a dedicated Flash controller and interface. Fusion Flash memory blocks combine fast access times ( 60 ns random access and 10 ns access in Read-Ahead mode) with a configurable 8-, 16-, or 32-bit datapath, enabling high-speed Flash operation without wait states. The memory block is organized in pages and sectors. Each page has 128 bytes, with 33 pages comprising one sector and 64 sectors per block. The Flash block can support multiple partitions. The only constraint on size is that partition boundaries must coincide with page boundaries. The flexibility and granularity enable many use models and allow added granularity in programming updates.
Fusion devices support two methods of external access to the Flash memory blocks. The first method is a serial interface that features a built-in JTAG-compliant port, which allows in-system programmability during user or monitor/test modes. This serial interface supports programming of an AES-encrypted stream. Secure data can be passed through the JTAG interface, decrypted, and then programmed in the Flash block. The second method is a soft parallel interface.
FPGA logic or an on-chip soft microprocessor can access Flash memory through the parallel interface. Since the Flash parallel interface is implemented in the FPGA fabric, it can potentially be customized to meet special user requirements. The Flash memory parallel interface provides configurable byte-wide (x8), word-wide (x16), or dual word-wide (x32) data port options. Through the programmable Flash parallel interface, the on-chip and off-chip memories can be cascaded for wider or deeper configurations.
The Flash memory has built-in security. The user can configure either the entire Flash block or the small blocks to prevent unintentional or intrusive attempts to change or destroy the storage contents. Each on-chip Flash memory block has a dedicated controller, enabling each block to operate independently.
The Flash block logic consists of the following sub-blocks:

- Flash block - Contains all stored data. The Flash block contains 64 sectors and each sector contains 33 pages of data.
- Page Buffer - Contains the contents of the current page that is being modified. A page contains 8 blocks of data.
- Block Buffer - Contains the contents of the last block accessed. A block contains 128 data bits.
- ECC Logic - The Flash memory stores error correction information with each block to perform single-bit error correction and double-bit error detection on all data blocks.


## User Nonvolatile FlashROM

In addition to the Flash blocks, Actel Fusion devices have 1 kbit of user-accessible, nonvolatile FlashROM on-chip. The FlashROM is organized as $8 \times 128$-bit pages. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard IEEE 1532 JTAG programming interface. Pages can be individually programmed (erased and written). On-chip AES decryption can be used selectively over public networks to securely load data such as security keys stored in the FlashROM for a user design.
The FlashROM can be programmed (erased and written) via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing.
The FlashPoint tool in the Actel Fusion development software solutions, Libero IDE and Designer, has extensive support for Flash memory blocks and FlashROM memory. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Actel Libero IDE and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

## SRAM and FIFO

Fusion devices have embedded SRAM blocks along the north and south sides of the device. Each variable-aspectratio SRAM block is 4,608 bits in size. Available memory configurations are $256 \times 18,512 \times 9,1 \mathrm{kx} 4,2 \mathrm{kx} 2$, and $4 k x 1$ bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be written through a 4-bit port and read as a single bitstream. The SRAM blocks can be initialized from the Flash memory blocks or via the device JTAG port (ROM emulation mode), using the UJTAG macro.
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost-Empty (AEMPTY) and Almost-Full (AFULL) flags in addition to the normal EMPTY and FULL flags. The embedded FIFO control unit contains the counters necessary for the generation of the read and write address pointers. The SRAM/FIFO blocks can be cascaded to create larger configurations.

## Clock Resources

## PLL and Clock Conditioning Circuitry (CCC)

Fusion devices provide designers with very flexible clock conditioning capabilities. Each member of the Fusion family contains six CCCs. In the two larger family members, two of these CCCs also include a PLL; the smaller devices support one PLL.
The inputs of the CCC blocks are accessible from the FPGA core or from one of several I/O inputs with dedicated CCC block connections.
The CCC block has the following key features:

- Wide input frequency range ( $f_{I N \_C C C}$ ) $=1.5 \mathrm{MHz}$ to 350 MHz
- Output frequency range ( $\mathrm{f}_{\text {OUT_Ccc }}$ ) $=0.75 \mathrm{MHz}$ to 350 MHz
- Clock phase adjustment via programmable and fixed delays from -6.275 ns to +8.75 ns
- Clock skew minimization (PLL)
- Clock frequency synthesis (PLL)
- On-chip analog clocking resources usable as inputs:
- 100 MHz on-chip RC oscillator
- Crystal oscillator

Additional CCC specifications:

- Internal phase shift $=0^{\circ}, 90^{\circ}, 180^{\circ}$, and $270^{\circ}$
- Output duty cycle $=50 \% \pm 1.5 \%$
- Low output jitter. Samples of peak-to-peak period jitter when a single global network is used:
- 70 ps at 350 MHz
- 90 ps at 100 MHz
- 180 ps at 24 MHz
- Worst case $<2.5 \% \times$ clock period
- Maximum acquisition time $=150 \mu \mathrm{~s}$
- Low Power Consumption of 5 mW


## Global Clocking

Fusion devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there are on-chip oscillators as well as a comprehensive global clock distribution network.
The integrated RC oscillator generates a 100 MHz clock. It is used internally to provide a known clock source to the Flash memory read and write control. It can also be used as a source for the PLLs.
The crystal oscillator supports the following operating modes:

- Crystal ( 32.768 kHz to 20 MHz )
- Ceramic ( 500 kHz to 8 MHz )
- RC ( 32.768 kHz to 4 MHz )

Each VersaTile input and output port has access to nine VersaNets: six main and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via MUXes. The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

## Digital I/Os with Advanced I/O Standards

The Fusion family of FPGAs features a flexible digital I/O structure, supporting a range of voltages ( $1.5 \mathrm{~V}, 1.8 \mathrm{~V}$, 2.5 V , and 3.3 V ). Fusion FPGAs support many different digital I/O standards, both single-ended and differential.
The I/Os are organized into banks, with four or five banks per device. The configuration of these banks determines the I/O standards supported. The banks along the east and west sides of the device support the full range of I/O standards (single-ended and differential). The south bank supports the Analog Quads (analog I/O). In the family's two smaller devices, the north bank supports multiple single-ended digital I/O standards. In the family's larger devices, the north bank is divided into two banks of digital Pro I/Os, supporting a wide variety of single-ended, differential, and voltage-referenced I/O standards.
Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following applications:

- Single-Data-Rate (SDR) applications
- Double-Data-Rate (DDR) applications—DDR LVDS I/O for chip-to-chip communications
- Fusion banks support LVPECL, LVDS, BLVDS and M-LVDS with 20 multi-drop points.


## VersaTiles

The Fusion core consists of VersaTiles, which are also used in the successful Actel ProASIC3 family. The Fusion VersaTile supports the following:

- All three-input logic functions-LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set and optional enable

Refer to Figure 1-2 for the VersaTile configuration arrangement.

LUT-3 Equivalent D-Flip-Flop with Clear or Set Enable D-Flip-Flop with Clear or Set


Figure 1-2 • VersaTile Configurations

## Related Documents

## Application Briefs

Context Save and Reload with Real-Timestamp
http://www.actel.com/documents/
Fusion_ContextSaving_AB.pdf
Power Sequencing and Management
http://www.actel.com/documents/ Fusion_Power_Sequencing_AB.pdf
Real-Time Clock in Actel Fusion FPGAs
http://www.actel.com/documents/Fusion_RTC_AB.pdf
Lower Power Operation with the Fusion Device
http://www.actel.com/documents/
Fusion_LowPower_AB.pdf
Smart Battery Management Applications
http://www.actel.com/documents/
Fusion_SmartBat_AB.pdf

## Application Notes

## Fusion FlashROM

http://www.actel.com/documents/Fusion_FROM_AN.pdf
Fusion SRAMIFIFO Blocks
http://www.actel.com/documents/
Fusion_RAM_FIFO_AN.pdf
Using DDR in Fusion Devices
http://www.actel.com/documents/Fusion_DDR_AN.pdf
Fusion Security
http://www.actel.com/documents/
Fusion_Security_AN.pdf

## Using Fusion RAM as Multipliers

http://www.actel.com/documents/
Fusion_Multipliers_AN.pdf
Prototyping with AFS600 for Smaller Devices
http://www.actel.com/documents/
Fusion_Prototyp_AN.pdf

## User's Guides

Designer User's Guide
http://www.actel.com/documents/designer_UG.pdf
Fusion Design Flow Tutorial
http://www.actel.com/documents/fusion_df_ug.pdf
Fusion and ProASIC3/E Macro Library Guide
http://www.actel.com/documents/pa3_libguide_ug.pdf
Peripherals User's Guide
http://www.actel.com/documents/peripheral_ug.pdf
SmartGen, FlashROM, Flash Memory System Builder, and
Analog System Builder User's Guide
http://www.actel.com/documents/genguide_ug.pdf

## White Papers

Fusion Technology
http://www.actel.com/documents/Fusion_Tech_WP.pdf

## Device Architecture

## Fusion Stack Architecture

To manage the unprecedented level of integration in Fusion devices, Actel developed the Fusion technology stack (Figure 2-1). This layered model offers a flexible design environment, enabling design at very high and very low levels of abstraction. Fusion peripherals include hard analog IP and hard and soft digital IP. Peripherals will communicate across the FPGA fabric via a layer of soft gates-the Fusion backbone. Much more than a common bus interface, this Fusion backbone integrates a micro-sequencer within the FPGA fabric and will configure the individual peripherals and support lowlevel processing of peripheral data. Fusion applets are application building blocks that can control and respond to peripherals and other system signals. Applets can be rapidly combined to create large applications. The technology is scalable across devices, families, design types, and user expertise, and supports a well-defined interface for external IP and tool integration.
At the lowest level, Level 0, are Fusion peripherals. These are configurable functional blocks that can be hardwired structures such as a PLL or analog input channel, or soft (FPGA-gate) blocks such as a UART or two-wire serial interface. The Fusion peripherals are configurable and support a standard interface to facilitate communication and implementation.

Connecting and controlling access to the peripherals is the Fusion backbone, Level 1. The backbone is a softgate structure and is scalable to any number of peripherals. The backbone is a bus and much more; it manages peripheral configuration to ensure proper operation. Leveraging the common peripheral interface and a low-level state machine, the backbone efficiently offloads peripheral management from the system design. The backbone can set and clear flags based upon peripheral behavior and define performance criteria. The flexibility of the stack enables a designer to configure the silicon, directly bypassing the backbone if that level of control is desired.
One step up from the backbone is the Fusion applet, Level 2. The applet is an application building block that implements a specific function in FPGA gates. It can react to stimuli and board-level events coming through the backbone, or from other sources, and responds to these stimuli by accessing and manipulating peripherals via the backbone or initiating some other action. An applet controls or responds to the peripheral(s). Applets can be easily imported or exported from the design environment. The applet structure is open and welldefined, enabling users to import applets from Actel, system developers, third parties, and user groups.


Note: Levels 1, 2, and 3 are implemented in FPGA logic gates.
Figure 2-1 • Fusion Architecture Stack

The system application, Level 3, is the larger user application that utilizes one or more applets. Designing at the highest level of abstraction supported by the Actel Fusion technology stack, the application can be easily created in FPGA gates by importing and configuring multiple applets.
In fact, in some cases an entire FPGA system design can be created without any HDL coding.
An optional MCU enables a combination of software and HDL-based design methodologies. The MCU can be onchip or off-chip as system requirements dictate. System portioning is very flexible, allowing the MCU to reside above the applets or to absorb applets, or applets and backbone, if desired.
The Actel Fusion technology stack enables a very flexible design environment. Users can engage in design across a continuum of abstraction from very low to very high.

## Core Architecture

## VersaTile

Based upon successful Actel ProASIC3/E logic architecture, Fusion devices provide granularity comparable to gate arrays. The Fusion device core consists of a sea-ofVersaTiles architecture.

As illustrated in Figure 2-2, there are four inputs in a logic VersaTile cell, and each VersaTile can be configured using the appropriate Flash switch connections:

- Any three-input logic function
- Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set (on a fourth input)
VersaTiles can flexibly map the logic and sequential gates of a design. The inputs of the VersaTile can be inverted (allowing bubble pushing), and the output of the tile can connect to high-speed, very-long-line routing resources. VersaTiles and larger functions are connected with any of the four levels of routing hierarchy.
When the VersaTile is used as an enable D-flip-flop, the SET/CLR signal is supported by a fourth input, which can only be routed to the core cell over the VersaNet (global) network.
The output of the VersaTile is F2 when the connection is to the ultra-fast local lines, or YL when the connection is to the efficient long-line or very-long-line resources (Figure 2-2).


Legend: ــ Via (hard connection) / Switch (Flash connection) $\stackrel{\perp}{=}$ Ground
Note: *This input can only be connected to the global clock distribution network.
Figure 2-2 • Fusion Core VersaTile

## VersaTile Characteristics

## Sample VersaTile Specifications-Combinatorial Module

The Fusion library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library (Figure 2-3). For more details, refer to the Fusion and ProASIC3/E Macro Library Guide.


Figure 2-3 • Sample of Combinatorial Cells

## Fusion Family of Mixed-Signal Flash FPGAs

$\qquad$


Figure 2-4 • Combinatorial Timing Model and Waveforms

## Timing Characteristics

Table 2-1 - Combinatorial Cell Propagation Delays
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

| Combinatorial Cell | Equation | Parameter | $\mathbf{- 2}$ | $\mathbf{- 1}$ | Std. | Units |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| INV | $\mathrm{Y}=!\mathrm{A}$ | $\mathrm{t}_{\text {PD }}$ | 0.40 | 0.46 | 0.54 | ns |
| AND2 | $\mathrm{Y}=\mathrm{A} \cdot \mathrm{B}$ | $\mathrm{t}_{\text {PD }}$ | 0.47 | 0.54 | 0.63 | ns |
| NAND2 | $\mathrm{Y}=!(\mathrm{A} \cdot \mathrm{B})$ | $\mathrm{t}_{\text {PD }}$ | 0.47 | 0.54 | 0.63 | ns |
| OR2 | $\mathrm{Y}=\mathrm{A}+\mathrm{B}$ | $\mathrm{t}_{\text {PD }}$ | 0.49 | 0.55 | 0.65 | ns |
| NOR2 | $\mathrm{Y}=!(\mathrm{A}+\mathrm{B})$ | $\mathrm{t}_{\text {PD }}$ | 0.49 | 0.55 | 0.65 | ns |
| XOR2 | $\mathrm{Y}=\mathrm{A} \oplus \mathrm{B}$ | $\mathrm{t}_{\text {PD }}$ | 0.74 | 0.84 | 0.99 | ns |
| MAJ3 | $\mathrm{Y}=\mathrm{MAJ}(\mathrm{A}, \mathrm{B}, \mathrm{C})$ | $\mathrm{t}_{\text {PD }}$ | 0.70 | 0.79 | 0.93 | ns |
| XOR3 | $\mathrm{Y}=\mathrm{A} \oplus \mathrm{B} \oplus \mathrm{C}$ | $\mathrm{t}_{\text {PD }}$ | 0.87 | 1.00 | 1.17 | ns |
| MUX2 | $\mathrm{Y}=\mathrm{A}!\mathrm{S}+\mathrm{B} \mathrm{S}$ | $\mathrm{t}_{\text {PD }}$ | 0.51 | 0.58 | 0.68 | ns |
| AND3 | $\mathrm{Y}=\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C}$ | $\mathrm{t}_{\text {PD }}$ | 0.56 | 0.64 | 0.75 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

## Sample VersaTile Specifications-Sequential Module

The Fusion library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library (Figure 2-5). For more details, refer to the Fusion and ProASIC3/E Macro Library Guide.


Figure 2-5 • Sample of Sequential Cells


Figure 2-6 • Sequential Timing Model and Waveforms

## Sequential Timing Characteristics

## Table 2-2 • Register Delays

Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

| Parameter | Description | $\mathbf{- 2}$ | $\mathbf{- 1}$ | Std. | Units |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {CLKQ }}$ | Clock-to-Q of the Core Register | 0.55 | 0.63 | 0.74 | ns |
| $\mathrm{t}_{\text {SUD }}$ | Data Setup time for the Core Register | 0.43 | 0.49 | 0.57 | ns |
| $\mathrm{t}_{\text {HD }}$ | Data Hold time for the Core Register | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {SUE }}$ | Enable Setup time for the Core Register | 0.45 | 0.52 | 0.61 | ns |
| $\mathrm{t}_{\text {HE }}$ | Enable Hold time for the Core Register | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {CLR2Q }}$ | Asynchronous Clear-to-Q of the Core Register | 0.40 | 0.45 | 0.53 | ns |
| $\mathrm{t}_{\text {PRE2Q }}$ | Asynchronous Preset-to-Q of the Core Register | 0.40 | 0.45 | 0.53 | ns |
| $\mathrm{t}_{\text {REMCLR }}$ | Asynchronous Clear Removal time for the Core Register | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {RECCLR }}$ | Asynchronous Clear Recovery time for the Core Register | 0.22 | 0.25 | 0.30 | ns |
| $\mathrm{t}_{\text {REMPRE }}$ | Asynchronous Preset Removal time for the Core Register | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {RECPRE }}$ | Asynchronous Preset Recovery time for the Core Register | 0.22 | 0.25 | 0.30 | ns |
| $t_{\text {WCLR }}$ | Asynchronous Clear Minimum Pulse Width for the Core Register | 0.25 | 0.28 | 0.33 | ns |
| $t_{\text {WPRE }}$ | Asynchronous Preset Minimum Pulse Width for the Core Register | 0.25 | 0.28 | 0.33 | ns |
| $t_{\text {CKMPWH }}$ | Clock Minimum Pulse Width High for the Core Register | 0.36 | 0.41 | 0.48 | ns |
| $t_{\text {CKMPWL }}$ | Clock Minimum Pulse Width Low for the Core Register | 0.41 | 0.46 | 0.54 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.
$\qquad$

## Array Coordinates

During many place-and-route operations in the Actel Designer software tool, it is possible to set constraints that require array coordinates. Table 2-3 is provided as a reference. The array coordinates are measured from the lower left ( 0,0 ). They can be used in region constraints for specific logic groups/blocks, designated by a wildcard, and can contain core cells, memories, and I/Os.
Table 2-3 provides array coordinates of core cells and memory blocks.
I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed because there is not a one-to-one correspondence between I/O
cells and edge core cells. In addition, the I/O coordinate system changes depending on the die/package combination. It is not listed in Table 2-3. The Designer ChipPlanner tool provides array coordinates of all I/O locations. I/O and cell coordinates are used for placement constraints. However, I/O placement is easier by package pin assignment.
Figure 2-7 illustrates the array coordinates of an AFS600 device. For more information on how to use array coordinates for region/placement constraints, see the Designer User's Guide or online help (available in the software) for Fusion software tools.

## Table 2-3 • Array Coordinates

|  | VersaTiles |  |  |  | Memory Rows |  | All |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min. |  | $\mathbf{x}$ | $\mathbf{x}$ | Max. | Bottom | Top | Min. |
| Device | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{( x , y )}$ | $\mathbf{( x , y )}$ | $\mathbf{( x ,} \mathbf{y )}$ | $\mathbf{( x , ~ y )}$ |
| AFS090 | 3 | 2 | 66 | 25 | None | $(3,26)$ | $(0,0)$ | $(69,29)$ |
| AFS250 | 3 | 2 | 130 | 49 | None | $(3,50)$ | $(0,0)$ | $(133,53)$ |
| AFS600 | 3 | 4 | 194 | 75 | $(3,2)$ | $(3,76)$ | $(0,0)$ | $(197,79)$ |
| AFS1500 | 3 | 4 | 258 | 99 | $(3,2)$ | $(3,100)$ | $(0,0)$ | $(261,103)$ |



Note: The vertical I/O tile coordinates are not shown. West side coordinates are $\{(0,2)$ to $(2,2)\}$ to $\{(0,77)$ to $(2,77)\}$; east side coordinates are $\{(195,2)$ to $(197,2)\}$ to $\{(195,77)$ to $(197,77)\}$.

[^0]
## Routing Architecture

The routing structure of Fusion devices is designed to provide high performance through a flexible four-level hierarchy of routing resources: ultra-fast local resources; efficient long-line resources; high-speed, very-long-line resources; and the high-performance VersaNet networks.
The ultra-fast local resources are dedicated lines that allow the output of each VersaTile to connect directly to every input of the eight surrounding VersaTiles (Figure 2-8). The exception to this is that the SET/CLR input of a VersaTile configured as a D-flip-flop is driven only by the VersaNet global network.
The efficient, long-line resources provide routing for longer distances and higher fanout connections. These resources vary in length (spanning one, two, or four VersaTiles), run both vertically and horizontally, and cover the entire Fusion device (Figure 2-9 on page 2-9). Each VersaTile can drive signals onto the efficient longline resources, which can access every input of every VersaTile. Active buffers are inserted automatically by routing software to limit the loading effects.

The high-speed, very-long-line resources, which span the entire device with minimal delay, are used to route very long or high-fanout nets: length +/-12 VersaTiles in the vertical direction and length +/-16 in the horizontal direction from a given core VersaTile (Figure 2-10 on page 2-10). Very long lines in Fusion devices, like those in ProASIC3, have been enhanced. This provides a significant performance boost for long-reach signals.
The high-performance VersaNet global networks are lowskew, high-fanout nets that are accessible from external pins or from internal logic (Figure 2-11 on page 2-11). These nets are typically used to distribute clocks, reset signals, and other high-fanout nets requiring minimum skew. The VersaNet networks are implemented as clock trees, and signals can be introduced at any junction. These can be employed hierarchically with signals accessing every input on all VersaTiles.


Note: Input to the core cell for the D-flip-flop set and reset is only available via the VersaNet global network connection. Figure 2-8 • Ultra-Fast Local Lines Connected to the Eight Nearest Neighbors


Figure 2-9 • Efficient Long-Line Resources

Fusion Family of Mixed-Signal Flash FPGAs


## Global Resources (VersaNets)

Fusion devices offer powerful and flexible control of circuit timing through the use of analog circuitry. Each chip has six clock conditioning circuits (CCCs). The west CCC also contains a phase-locked loop (PLL) core. In the two larger devices (AFS600 and AFS1500), both the west and the east CCC contain a PLL. The PLLs include delay lines, a phase shifter $\left(0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\right)$, and clock multipliers/dividers. Each CCC has all the circuitry needed for the selection and interconnection of inputs to the VersaNet global network. The east and west CCCs each have access to three VersaNet global lines on each side of the chip (six lines total). The CCCs at the four corners each have access to three quadrant global lines on each quadrant of the chip.

## Advantages of the VersaNet Approach

One of the architectural benefits of Fusion is the set of powerful and low-delay VersaNet global networks. Fusion offers six chip (main) global networks that are distributed from the center of the FPGA array (Figure 2-11). In
addition, Fusion devices have three regional globals (quadrant globals) in each of the four chip quadrants. Each core VersaTile has access to nine global network resources: three quadrant and six chip (main) global networks. There are a total of 18 global networks on the device. Each of these networks contains spines and ribs that reach all VersaTiles in all quadrants (Figure 2-12 on page 2-12). This flexible VersaNet global network architecture allows users to map up to 180 different internal/external clocks in a Fusion device. Details on the VersaNet networks are given in Table 2-4 on page 2-12. The flexibility of the Fusion VersaNet global network allows the designer to address several design requirements. User applications that are clock-resource-intensive can easily route external or gated internal clocks using VersaNet global routing networks. Designers can also drastically reduce delay penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global network.


Figure 2-11 • Overview of Fusion VersaNet Global Network

## Fusion Family of Mixed-Signal Flash FPGAs



Figure 2-12 • Global Network Architecture
Table 2-4 • Globals/Spines/Rows by Device

|  | AFS090 | AFS250 | AFS600 | AFS1500 |
| :--- | :---: | :---: | :---: | :---: |
| Global VersaNets (Trees)* $^{*}$ | 9 | 9 | 9 | 9 |
| VersaNet Spines/Tree | 4 | 8 | 12 | 20 |
| Total Spines | 36 | 72 | 108 | 180 |
| VersaTiles in Each Top or Bottom Spine | 384 | 768 | 1,152 | 1,920 |
| Total VersaTiles | 2,304 | 6,144 | 13,824 | 38,400 |

Note: *There are six chip (main) globals and three globals per quadrant.

## VersaNet Global Networks and Spine Access

The Fusion architecture contains a total of 18 segmented global networks that can access the VersaTiles, SRAM memory, and I/O tiles on the Fusion device. There are 6 chip (main) global networks that access the entire device and 12 quadrant networks (3 in each quadrant). Each device has a total of 18 globals. These VersaNet global networks offer fast, low-skew routing resources for highfanout nets, including clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-skew local networks using spines for up to 180 internal/external clocks (in an AFS1500 device) or other high-fanout nets in Fusion devices. Optimal usage of these low-skew networks can result in significant improvement in design performance on Fusion devices.
The nine spines available in a vertical column reside in global networks with two separate regions of scope: the quadrant global network, which has three spines, and the chip (main) global network, which has six spines. Note that there are three quadrant spines in each quadrant of the device. There are four quadrant global network regions per device (Figure 2-12 on page 2-12).

The spines are the vertical branches of the global network tree, shown in Figure 2-11 on page 2-11. Each spine in a vertical column of a chip (main) global network is further divided into two equal-length spine segments: one in the top and one in the bottom half of the die.
Each spine and its associated ribs cover a certain area of the Fusion device (the "scope" of the spine; see Figure 2-11 on page 2-11). Each spine is accessed by the dedicated global network MUX tree architecture, which defines how a particular spine is driven-either by the signal on the global network from a CCC, for example, or another net defined by the user (Figure 2-13). Quadrant spines can be driven from user I/Os on the north and south sides of the die, via analog I/Os configured as direct digital inputs. The ability to drive spines in the quadrant global networks can have a significant effect on system performance for high-fanout inputs to a design.
Details of the chip (main) global network spine-selection MUX are presented in Figure 2-13. The spine drivers for each spine are located in the middle of the die.
Quadrant spines are driven from a north or south rib. Access to the top and bottom ribs is from the corner CCC or from the I/Os on the north and south sides of the device.


Figure 2-13 • Spine-Selection MUX of Global Tree

## Clock Aggregation

Clock aggregation allows for multi-spine clock domains. A MUX tree provides the necessary flexibility to allow long-lines or I/Os to access domains of one, two, or four global spines. Signal access to the clock aggregation system is achieved through long-line resources in the central rib, and also through local resources in the north and south ribs, allowing I/Os to feed directly into the clock system. As Figure 2-14 indicates, this access system is contiguous.

There is no break in the middle of the chip for the north and south I/O VersaNet access. This is different from the quadrant clocks, located in these ribs, which only reach the middle of the rib.


Figure 2-14 • Clock Aggregation Tree Architecture

## Global Resource Characteristics AFS600 VersaNet Topology

Clock delays are device-specific. Figure 2-15 is an example of a global tree used for clock routing. The global tree presented in Figure 2-15 is driven by a CCC located on the west side of the AFS600 device. It is used to drive all D-flipflops in the device.


Figure 2-15 • Example of Global Tree Use in an AFS600 Device for Clock Routing

Fusion Family of Mixed-Signal Flash FPGAs

## VersaNet Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are dependent upon I/O standard, and the clock may be driven and conditioned internally by the CCC module. Table 2-5, Table 2-6, and Table 2-7 present minimum and maximum global clock delays within the device. Minimum and maximum delays are measured with minimum and maximum loading, respectively.

## Timing Characteristics

Table 2-5 • AFS600 Global Resource Timing
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

| Parameter | Description | -2 |  | -1 |  | Std. |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. ${ }^{1}$ | Max. ${ }^{\text {a }}$ | Min. ${ }^{1}$ | Max. ${ }^{2}$ | Min. ${ }^{1}$ | Max. ${ }^{\text {a }}$ |  |
| trCKL | Input Low Delay for Global Clock | 1.28 | 1.51 | 1.46 | 1.72 | 1.71 | 2.02 | ns |
| $\mathrm{t}_{\text {RCKH }}$ | Input High Delay for Global Clock | 1.28 | 1.55 | 1.45 | 1.77 | 1.71 | 2.08 | ns |
| trckMPWH | Minimum Pulse Width High for Global Clock |  |  |  |  |  |  | ns |
| $\mathrm{t}_{\text {RCKMPWL }}$ | Minimum Pulse Width Low for Global Clock |  |  |  |  |  |  | ns |
| $t_{\text {RCKSW }}$ | Maximum Skew for Global Clock |  | 0.27 |  | 0.31 |  | 0.37 | ns |
| $\mathrm{F}_{\text {RMAX }}$ | Maximum Frequency for Global Clock |  |  |  |  |  |  | MHz |

## Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

Table 2-6 • AFS250 Global Resource Timing
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

| Parameter | Description | -2 |  | -1 |  | Std. |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. ${ }^{1}$ | Max. ${ }^{2}$ | Min. ${ }^{1}$ | Max. ${ }^{2}$ | Min. ${ }^{1}$ | Max. ${ }^{2}$ |  |
| $t_{\text {RCKL }}$ | Input Low Delay for Global Clock | 1.19 | 1.42 | 1.36 | 1.62 | 1.59 | 1.91 | ns |
| $\mathrm{t}_{\text {RCKH }}$ | Input High Delay for Global Clock | 1.19 | 1.46 | 1.35 | 1.66 | 1.59 | 1.96 | ns |
| $\mathrm{t}_{\text {RCKMPWH }}$ | Minimum Pulse Width High for Global Clock |  |  |  |  |  |  | ns |
| $\mathrm{t}_{\text {RCKMPWL }}$ | Minimum Pulse Width Low for Global Clock |  |  |  |  |  |  | ns |
| $\mathrm{t}_{\text {RCKSW }}$ | Maximum Skew for Global Clock |  | 0.27 |  | 0.31 |  | 0.37 | ns |
| $\mathrm{F}_{\text {RMAX }}$ | Maximum Frequency for Global Clock |  |  |  |  |  |  | MHz |

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

Table 2-7 • AFS090 Global Resource Timing
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

|  | Description | -2 |  | -1 |  | Std. |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter |  | Min. ${ }^{1}$ | Max. ${ }^{2}$ | Min. ${ }^{1}$ | Max. ${ }^{2}$ | Min. ${ }^{1}$ | Max. ${ }^{\text {a }}$ |  |
| $\mathrm{t}_{\text {RCKL }}$ | Input Low Delay for Global Clock | 1.18 | 1.41 | 1.34 | 1.60 | 1.58 | 1.89 | ns |
| $\mathrm{t}_{\text {RCKH }}$ | Input High Delay for Global Clock | 1.17 | 1.44 | 1.33 | 1.64 | 1.57 | 1.93 | ns |
| $\mathrm{t}_{\text {RCKMPWH }}$ | Minimum Pulse Width High for Global Clock |  |  |  |  |  |  | ns |
| $t_{\text {RCKMPWL }}$ | Minimum Pulse Width Low for Global Clock |  |  |  |  |  |  | ns |
| $\mathrm{t}_{\text {RCKSW }}$ | Maximum Skew for Global Clock |  | 0.27 |  | 0.31 |  | 0.37 | ns |
| $\mathrm{F}_{\text {RMAX }}$ | Maximum Frequency for Global Clock |  |  |  |  |  |  | MHz |

## Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

## Clocking Resources

The Fusion family has a robust collection of clocking peripherals, as shown in the block diagram in Figure 2-16. These on-chip resources enable the creation, manipulation, and distribution of many clock signals. The Fusion integrated RC oscillator produces a 100 MHz clock source with no external components. For systems requiring more precise clock signals, the Actel Fusion family supports an on-chip crystal oscillator circuit. The integrated PLLs in each Fusion device can use the RC
oscillator, crystal oscillator, or another on-chip clock signal as a source. These PLLs offer a variety of capabilities to modify the clock source (multiply, divide, synchronize, advance, or delay). Utilizing the CCC found in the popular Actel ProASIC3 family, Fusion incorporates six CCC blocks. The CCCs allow access to Fusion global and local clock distribution nets, as described in the "Global Resources (VersaNets)" section on page 2-11.


Figure 2-16 • Fusion Clocking Options

## RC Oscillator

The RC oscillator is an on-chip free running clock source generating a 100 MHz clock. It can be used as a source clock for both on-chip and off-chip resources. When used in conjunction with the Fusion PLL and CCC circuits, the RC oscillator clock source can be used to generate clocks of varying frequency and phase.

The Fusion RC oscillator is very accurate at $\pm 1 \%$ over commercial and industrial temperature ranges. It is an automated clock, requiring no setup or configuration by the user. It requires only that the power and GND_OSC pins be connected; no external components are required. The RC oscillator can be used to drive either a PLL or another internal signal.

## RC Oscillator Characteristics

Table 2-8 • Electrical Characteristics of RC Oscillator

| Parameter | Description | Condition | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{\mathrm{RC}}$ | Operating Frequency |  |  | 100 |  | MHz |
|  | Accuracy | Temperature: $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Voltage: $3.3 \mathrm{~V}+/-5 \%$ |  | 1 |  | \% |
|  |  | Temperature: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Voltage: $3.3 \mathrm{~V}+/-5 \%$ |  | 3 |  | \% |
|  | Output Jitter | Period Jitter (at 5 k cycles) |  | 100 |  | ps |
|  |  | Cycle-Cycle Jitter (at 5 k cycles) |  | 100 |  | ps |
|  |  | Period Jitter (at 5 k cycles) with $1 \mathrm{kHz} / 300 \mathrm{mV}$ peak-to-peak noise on power supply |  | 150 |  | ps |
|  |  | Cycle-Cycle Jitter (at 5 k cycles) with $1 \mathrm{kHz} /$ 300 mV peak-to-peak noise on power supply |  | 150 |  | ps |
|  | Output Duty Cycle |  |  | 50 |  | \% |
| I DYNRC | Operating Current |  |  | 1 |  | mA |

## Crystal Oscillator

The on-chip crystal oscillator circuit works with an offchip crystal to generate a high precision clock. It has an accuracy of $100 \mathrm{ppm}(0.01 \%)$ and is capable of providing system clocks for Fusion peripherals and other system clock networks, both on-chip and off-chip. When combined with the on-chip CCC/PLL blocks, a wide range of clock frequencies can be created to support various design requirements.
The on-chip circuitry is designed to work with an external crystal, ceramic resonator, or a resistor-capacitor (RC) network. It can only support one of these
configurations at a time. Typical design practices dictate that the desired mode for the crystal oscillator be determined and the board designed for a single configuration. The crystal oscillator supports four modes of operation, defined in Table 2-9.
In Mode 0, the oscillator is configured to work with an external RC network. The RC components are connected to the XTAL1 pin, with XTAL2 left floating. The frequency generated by the circuit in Mode 0 is determined by the RC time constant of the selected components (Figure 2-18).

Table 2-9 • Crystal Oscillator Mode Definition

| Mode | RTCMODE/MODE[1:0] | Recommended Capacitor | Frequency Range (MHz) |
| :--- | :---: | :---: | :---: |
| RC network (Mode 0) | 00 | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
| Low gain (Mode 1) | 01 | 100 pF | 0.032 to 0.20 |
| Medium gain (Mode 2) | 10 | 100 pF | 0.20 to 2.0 |
| High gain (Mode 3) | 11 | 15 pF | 2.0 to 20.0 |


| XTL <br> SELMODE | CLKOUT |
| :---: | :---: |
|  |  |
| RTCMODE[1:0] MODE[1:0] |  |

Figure 2-17 • Crystal Oscillator Macro


Figure 2-18 • Crystal Oscillator: RC Time Constant Values vs. Frequency (typical)
$\qquad$

In Modes 1 to 3, the crystal oscillator is configured to support an external crystal or ceramic resonator. These modes correspond to low, medium, and high gain. They differ in the frequency of crystal or resonator that is supported. The crystal or resonator is connected to the XTAL1 and XTAL2 pins. Additionally, a capacitor is required on both XTAL1 and XTAL2 pins to ground (Figure 2-16 on page 2-18). Table 2-9 on page 2-20 details each crystal oscillator mode, supported frequency range, and recommended capacitor value.

A use model supported by the Fusion device involves powering down the core while the real-time counter (RTC) continues to run, clocked by the crystal oscillator. When powered down, the core cannot control crystal oscillator mode pins. Also, some designers may wish to avoid the RTC altogether. To support both situations, the crystal oscillator can be controlled by either the RTC or the FGPA core. If the RTC is instantiated in the design, it will by default use RTCMODE[1:0] to set the crystal oscillator control pins (the default). If the RTC is not used in the design, the FPGA core will set the crystal oscillator control pins with MODE[1:0].

## Crystal Oscillator Characteristics

Table 2-10 • Electrical Characteristics of the Crystal Oscillator

| Parameter | Description | Condition | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FXTAL | Operating Frequency | Using External Crystal | 0.032 |  | 20 | MHz |
|  |  | Using Ceramic Resonator | 0.5 |  | 8 | MHz |
|  |  | Using RC Network | 0.032 |  | 4 | MHz |
|  | Output Duty Cycle |  |  | 50 |  | \% |
|  | Output Jitter | With 10 MHz Crystal |  | 50 |  | ps RMS |
| $\mathrm{I}_{\text {DYNXTAL }}$ | Operating Current | RC |  | 0.6 |  | mA |
|  |  | 0.032-0.2 MHz |  | 0.6 |  | mA |
|  |  | $0.2-2.0 \mathrm{MHz}$ |  | 0.6 |  | mA |
|  |  | 2.0-20.0 MHz |  | 0.6 |  | mA |
| $\mathrm{I}_{\text {STBXTAL }}$ | Sleep Current |  |  | 10 |  | $\mu \mathrm{A}$ |
| PSRR ${ }_{\text {XTAL }}$ | Power Supply Noise Tolerance |  |  | 0.5 |  | Vp-p |
| $\mathrm{V}_{\text {IHXTAL }}$ | Input Logic Level High |  | 90\% of $\mathrm{V}_{\text {CC }}$ |  |  | V |
| $\mathrm{V}_{\text {ILXTAL }}$ | Input Logic Level Low |  |  |  | $10 \%$ of $\mathrm{V}_{\mathrm{CC}}$ | V |

## Fusion Family of Mixed-Signal Flash FPGAs

## Clock Conditioning Circuits

In Fusion devices, the CCCs are used to implement frequency division, frequency multiplication, phase shifting, and delay operations.
The CCCs are available in six chip locations-each of the four chip corners and in the middle of the east and west chip sides.
Each CCC can implement up to three independent global buffers (with or without programmable delay), or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to three global outputs. Unused global outputs of a PLL can be used to implement independent global buffers, up to a maximum of three global outputs for a given CCC.

A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, and CLKC-GLC) of a given CCC.

A PLL macro uses the CLKA CCC input to drive its reference clock. It uses the GLA and, optionally, the GLB and GLC global outputs to drive the global networks. A PLL macro can also drive the YB and YC regular core outputs. The GLB (or GLC) global output cannot be reused if the YB (or YC) output is used (Figure 2-19). Refer to the "PLL Macro" section on page 2-27 for more information.

Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

- Three dedicated single-ended I/Os using a hardwired connection
- Two dedicated differential I/Os using a hardwired connection
- The FPGA core

The CCC block is fully configurable, either via Flash configuration bits set in the programming bitstream or through an asynchronous interface. This asynchronous interface is dynamically accessible from inside the Fusion device to permit parameter changes (such as divide ratios) during device operation. To increase the versatility and flexibility of the clock conditioning system, the CCC configuration is determined either by the user during the design process, with configuration data being stored in Flash memory as part of the device programming procedure, or by writing data into a dedicated shift register during normal device operation. This latter mode allows the user to dynamically reconfigure the CCC without the need for core programming. The shift register is accessed through a simple serial interface. Refer to the "CCC and PLL Characteristics" section on page 2-28 for more information.


## Notes:

1. Visit the Actel website for future application notes concerning dynamic PLL reconfiguration. Refer to the "PLL Macro" section on page 2-27 for signal descriptions.
2. Many specific INBUF macros support the wide variety of single-ended and differential I/O standards for the Fusion family.

Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro

Table 2-11 • Available Selections of I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

| CLKBUF Macros |
| :---: |
| CLKBUF_LVCMOS5 |
| CLKBUF_LVCMOS33 ${ }^{1}$ |
| CLKBUF_LVCMOS18 |
| CLKBUF_LVCMOS15 |
| CLKBUF_PCI |
| CLKBUF_LVDS ${ }^{2}$ |
| CLKBUF_LVPECL |

## Notes:

1. This is the default macro. For more details refer to the Fusion and ProASIC3/E Macro Library Guide.
2. BLVDS and M-LVDS standards are supported with CLKBUF_LVDS.

## Global Buffers with No Programmable Delays

The CLKBUF and CLKBUF_LVPECLLVDS macros are composite macros that include an I/O macro driving a global buffer, which are hardwired together (Figure 2-20). The CLKINT macro provides a global buffer function driven by the FPGA core.
The CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are pass-through clock sources and do not use the PLL or provide any programmable delay functionality.
Many specific CLKBUF macros support the wide variety of single-ended and differential I/O standards supported by Fusion devices. The available CLKBUF macros are described in the Fusion and ProASIC3/E Macro Library Guide.

| Clock Source |  |  | Clock Conditioning | Output GLA |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| CLKBUF_LVDS/LVPECL Macro | CLKBUF Macro | CLKINT Macro |  | or |
| PADN - 区 |  |  | None | GLB |
| PADP - - - | - | $\bigcirc$ |  | or |
|  |  |  |  | GLC |

Figure 2-20 • Global Buffers with No Programmable Delay

## Global Buffers with Programmable Delay

The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to delay the clock input using a programmable delay (Figure 2-21). The CLKDLY macro takes the selected clock input and adds a user-defined delay element. This macro generates an output clock phase shift from the input clock.
The CLKDLY macro can be driven by an INBUF macro to create a composite macro, where the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the I/O must be placed in one of the dedicated global I/O locations.
Many specific INBUF macros support the wide variety of single-ended and differential I/O standards supported by the Fusion family. The available INBUF macros are described in the Fusion and ProASIC3IE Macro Library Guide.

The CLKDLY macro can be driven directly from the FPGA core.
The CLKDLY macro can also be driven from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate from the hardwired I/O connection described earlier.
The visual CLKDLY configuration in the SmartGen part of the Libero IDE and Designer tools allows the user to select the desired amount of delay, and configures the delay elements appropriately. SmartGen also allows the user to select the input clock source. SmartGen will automatically instantiate the special macro, PLLINT, when needed.


Figure 2-21 • Fusion CCC Options: Global Buffers with Programmable Delay

## Global Input Selections

Each global buffer, as well as the PLL reference clock, can be driven from one of the following (Figure 2-22):

- Three dedicated single-ended I/Os using a hardwired connection
- Two dedicated differential I/Os using a hardwired connection
- The FPGA core


GAA[0:2]: GA represents global in the northwest corner of the device. $A[0: 2]$ : designates specific $A$ clock source.

## Notes:

1. Represents the global input pins. Globals have direct access to the clock conditioning block and are not routed via the FPGA fabric. Refer to the "User I/O Naming Convention" section on page 2-120 for more information.
2. Instantiate the routed clock source input as follows:
a) Connect the output of a logic element to the clock input of the PLL, CLKDLY, or CLKINT macro.
b) Do not place a clock source I/O (INBUF or INBUF_LVPECL/LVDS) in a relevant global pin location.
3. LVDS-based clock sources are available in the east and west banks on all Fusion devices.

Figure 2-22 • Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT

## CCC Physical Implementation

The CCC circuit is composed of the following (Figure 2-23):

- PLL core
- Three phase selectors
- Six programmable delays and one fixed delay
- Five programmable frequency dividers that provide frequency multiplication/division (not shown in Figure 2-23 because they are automatically configured based on the user's required frequencies)
- One dynamic shift register that provides CCC dynamic reconfiguration capability (not shown).


## CCC Programming

The CCC block is fully configurable. It is configured via static Flash configuration bits in the array, set by the user in the programming bitstream, or configured through an asynchronous dedicated shift register dynamically accessible from inside the Fusion device. The dedicated shift register permits parameter changes such as PLL divide ratios and delays during device operation. This latter mode allows the user to dynamically reconfigure the PLL without the need for core programming. The register file is accessed through a simple serial interface.


Note: Clock divider and multiplier blocks are not shown in this figure or in SmartGen. They are automatically configured based on the user's required frequencies.
Figure 2-23 • PLL Block

## PLL Macro

The PLL functionality of the clock conditioning block is supported by the PLL macro. Note that the PLL macro reference clock uses the CLKA input of the CCC block, which is only accessible from the global $A[0: 2]$ package pins. Refer to Figure 2-22 on page 2-25 for more information.
The PLL macro provides five derived clocks (three independent) from a single reference clock. The PLL feedback loop can be driven either internally or externally. The PLL macro also provides power-down input and lock output signals. During power-up, POWERDOWN should be asserted low until $\mathrm{V}_{\mathrm{CC}}$ is up. See Figure 2-19 on page 2-22 for more information.
Inputs:

- CLKA: selected clock input
- POWERDOWN (active low): disables PLLs. The default state is power-down on (active low).


## Outputs:

- LOCK (active high): indicates that PLL output has locked on the input reference signal
- GLA, GLB, GLC: outputs to respective global networks
- YB, YC: allows output from the CCC to be routed back to the FPGA core
As previously described, the PLL allows up to five flexible and independently configurable clock outputs. Figure 2-23 on page 2-26 illustrates the various clock output options and delay elements.

As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these (GLB and GLC) can be routed to the B and C global networks, respectively, and/or routed to the device core (YB and YC). There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).
There is also a delay element in the feedback loop that can be used to advance the clock relative to the reference clock.
The PLL macro reference clock can be driven by an INBUF macro to create a composite macro, where the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the I/O must be placed in one of the dedicated global I/O locations.
The PLL macro reference clock can be driven directly from the FPGA core.
The PLL macro reference clock can also be driven from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate it from the hardwired I/O connection described earlier.
The visual PLL configuration in SmartGen, available with the Libero IDE and Designer tools, will derive the necessary internal divider ratios based on the input frequency and desired output frequencies selected by the user. SmartGen allows the user to select the various delays and phase shift values necessary to adjust the phases between the reference clock (CLKA) and the derived clocks (GLA, GLB, GLC, YB, and YC). SmartGen also allows the user to select where the input clock is coming from. SmartGen automatically instantiates the special macro, PLLINT, when needed.

## Fusion Family of Mixed-Signal Flash FPGAs

## CCC and PLL Characteristics

## Timing Characteristics

Table 2-12 • Fusion CCC/PLL Specification

| Parameter | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Clock Conditioning Circuitry Input Frequency $\mathrm{f}_{\mathrm{IN} \text { _CCC }}$ | 1.5 |  | 350 | MHz |
| Clock Conditioning Circuitry Output Frequency fout_ccc | 0.75 |  | 350 | MHz |
| Delay Increments in Programmable Delay Blocks ${ }^{1,2}$ |  | 200 |  | ps |
| Number of Programmable Values in Each Programmable Delay Block |  |  | 32 |  |
| Input Period Jitter |  |  | 1.5 | ns |
| CCC Output Peak-to-Peak Period Jitter F CCC_Out | Max Peak-to-Peak Period Jitter |  |  |  |
|  | 1 Global Network Used |  | 3 Global Networks Used |  |
| 0.75 MHz to 24 MHz | 0.50\% |  | 0.70\% |  |
| 24 MHz to 100 MHz | 1.00\% |  | 1.20\% |  |
| 100 MHz to 250 MHz | 1.75\% |  | 2.00\% |  |
| 250 MHz to 350 MHz | 2.50\% |  | 5.60\% |  |
| Acquisition Time |  |  | 150 | $\mu \mathrm{s}$ |
| Output Duty Cycle | 48.5 |  | 51.5 | \% |
| Delay Range in Block: Programmable Delay $1^{1,2}$ | 0.6 |  | 5.56 | ns |
| Delay Range in Block: Programmable Delay $2{ }^{1,2}$ | 0.025 |  | 5.56 | ns |
| Delay Range in Block: Fixed Delay ${ }^{1,2}$ |  | 2.2 |  | ns |

## Notes:

1. This delay is a function of voltage and temperature. See Table 3-7 on page 3-7 for deratings.
2. $T_{J}=25^{\circ} \mathrm{C}, V_{\mathrm{CC}}=1.5 \mathrm{~V}$

## No Glitch MUX (NGMUX)

Positioned downstream from the PLL/CCC blocks, the NGMUX provides a special switching sequence between two asynchronous clock domains that prevents generating any unwanted narrow clock pulses. The NGMUX is used to switch the source of a global between three different clock sources. Allowable inputs are either two PLL/CCC outputs or a PLL/CCC output and a regular net, as shown
in Figure 2-24. The GLMUXCFG[1:0] configuration bits determine the source of the CLK inputs (i.e., internal signal, GLA, or GLC). These are set by SmartGen during design, but can also be changed by dynamically reconfiguring the PLL. The GLMUXSEL[1:0] bits control which clock source is passed through the NGMUX to the global network (GL). See Table 2-13.


Figure 2-24 • NGMUX
Table 2-13 - NGMUX Configuration and Selection Table

| GLMUXCFG[1:0] | GLMUXSEL[1:0] |  | Selected Input Signal | MUX Type |
| :--- | :---: | :---: | :---: | :---: |
| 00 | $X$ | 0 | GLA | 2-to-1 GLMUX |
|  | $X$ | 1 | GLC |  |
|  | $X$ | 0 | GLA | 2-to-1 GLMUX |
|  | $X$ | 1 | GLINT |  |
| 11 | $X$ | 0 | GLC | 2-to-1 GLMUX |
|  | $X$ | 1 | GLINT | 3-to-1 GLMUX |
|  | 0 | 0 | GLA |  |
|  | 0 | 1 | GLC |  |
|  | 1 | 0 | GLINT |  |
|  | 1 | 1 |  |  |

The NGMUX macro is simplified to show the two clock options that have been selected by the GLMUXCFG[1:0] bits. Figure 2-25 illustrates the NGMUX macro. During design, the two clock sources are connected to CLK0 and CLK1 and are controlled by GLMUXSEL[1:0] to determine which signal is to be passed through the MUX.


Figure 2-25 • NGMUX Macro
The sequence of switching between two clock sources (from CLK0 to CLK1) is as follows (Figure 2-26):

- GLMUXSEL[1:0] transitions to initiate a switch.
- GL drives one last complete CLKO positive pulse (i.e., one rising edge followed by one falling edge).
- From that point, GL stays low until the second rising edge of CLK1 occurs.
- At the second CLK1 rising edge, GL will begin to continuously deliver CLK1 signal.

Minimum $\mathrm{t}_{\mathrm{sw}}=0.05 \mathrm{~ns}$ at $25^{\circ} \mathrm{C}$ (typical conditions).
For examples of NGMUX operation, refer to the Peripherals User's Guide.


Figure 2-26 • NGMUX Waveform
$\qquad$

## Real-Time Counter System

The addition of the RTC system enables Fusion devices to support both standby and sleep modes of operation, greatly reducing power consumption in many applications.
The RTC system comprises six blocks that work together to provide this increased functionality and reduced power consumption. Figure 2-27 shows these blocks and how they are connected.

- RTC (Figure 2-28)
- Crystal oscillator
- $\mathrm{V}_{\text {CC33up }}$ detector
- Voltage regulator initialization
- Voltage regulator logic
- 1.5 V voltage regulator

The RTC provides a counter as well as a MATCH output signal that may be used in the FPGA and, optionally, to power-up the on-chip 1.5 V voltage regulator and provide a 1.5 V power source (in conjunction with an external pass transistor) to the FPGA fabric portion of the Fusion silicon device. The FPGA fabric can then be used to power-down the 1.5 V voltage regulator.


Figure 2-27 • Real-Time Counter System


Figure 2-28 • RTC Block Diagram

## Fusion Family of Mixed-Signal Flash FPGAs

## Real-Time Counter

The RTC can be configured to power up the FPGA fabric at a specific time or periodically. Custom user logic or a soft microcontroller within the FPGA fabric portion of the Fusion device can be programmed to read and modify the registers in the RTC. Based on this information or other internal or external conditions, the FPGA may decide to power down the voltage regulator and thereby shut off the FPGA fabric.
The 3.3 V supply must be valid and the crystal oscillator (nominally 32.768 kHz ) enabled for self-time wake-up/ restart operation. When operating from the 3.3 V supply and the 1.5 V core voltage is disabled, the ACM interface to the FPGA is disabled.
A 40-bit loadable counter is used as the primary timekeeping element within the RTC. This counter can be configured to reset itself when a count value is reached that matches the value set within a 40-bit match register. Note that the only exception to this self-clearing mechanism occurs when the 40 -bit counter is equal to 0 ( $0 \times 0000000000$ ), since the counter would never increment from zero. When the device is first powered up (i.e., when the 3.3 V supply becomes valid) the 40-bit counter and 40-bit match register are cleared to logic 0 , and the MATCH output signal is active (logic 1). At any time when the 40-bit counter value does not match the value in the 40 -bit match register, the MATCH output signal will become inactive (logic 0 ).
Both the counter and match registers are addressable (read/write) from the FPGA and through a JTAG instruction. The RTC is considered part of the analog system and is accessed via ACM. Refer to the "Analog Configuration MUX" section on page 2-89 for detailed instructions on writing to the RTC via the ACM. The counter action can be suspended/resumed by clearing/ setting the Cntr_En bit in the Control/Status Register.
If a 32.768 kHz external crystal is connected to the crystal oscillator pad, the 40-bit counter will have a maximum count of 4,294,967,296 seconds, which equates to just
over 136 years of elapsed timekeeping with a minimum period of $1 / 256$ second, which will be the toggle rate of the LSB bit of the 40-bit counter.
Frequencies other than 32.768 kHz can be used as a clock source, with the appropriate scaling of the LSB time interval. Maximum input clock frequency is 20 MHz (the crystal oscillator limit).
The RTC signals are included in the Analog Block macro. The signal functions and descriptions are listed in Table 2-14.
A Fusion use model includes the RTC controlling the power-up state of the FPGA core via the 1.5 V regulator. To support this model, the crystal oscillator must be running and configured when the FPGA is powered off. Hence, when the RTC is enabled in the system design, it will configure the crystal oscillator via the RTCXTLMODE[1:0] and RTCXTLSEL pins.
A 7-bit pre-scaler block is used to divide the source clock (from the external crystal) by 128 . This pre-scaled $50 \%$ -duty-cycle clock signal is then used by the counter logic as its reference clock. Given an external crystal frequency of 32.768 kHz , the pre-scaler output clock will toggle at a rate of $32.768 \mathrm{kHz} / 128=256 \mathrm{~Hz}$
The RTC is built from and controlled by a set of registers, denoted "Main Registers" in Figure 2-27 on page 2-31. These registers are accessed via the ACM.
The FPGA fabric portion of the Fusion device must be powered up and active at least once to write to the various registers within the RTC to initialize them for the user's application. Users set up the RTC by configuring it from the Actel SmartGen tool implementing custom logic, or programming a soft microcontroller.
The 40-bit counter and match register are each divided into five bytes. Each byte is directly addressable by the ACM. The address map of registers accessed through the ACM and used by the RTC is shown in Table 2-15 on page 2-33.

Table 2-14 • RTC Macro Signal Description

| Signal Name | Number of Bits | Direction | Function |
| :--- | :---: | :---: | :--- |
| RTCMATCH | 1 | Out | Match between 40-bit counter and match register |
| RTCPSMMATCH | 1 | Out | RTCMATCH connected to voltage regulator power supply <br> monitor (VRPSM) (Figure 2-30 on page 2-36) |
| RTCXTLMODE[1:0] | 2 | Out | Drives XTLOSC RTCMODE[1:0] pins |
| RTCXTLSEL | 1 | Out | Drives XTLOSC SELMODE pin |
| RTCCLK | 1 | In | RTC clock input from XTLOSC CLKOUT pin |

Table 2-15 • RTC ACM Memory Map

| ACM_ADDR[7:0] | Decimal | Register Name | Description | Use |
| :--- | :---: | :---: | :--- | :--- |
| $0 \times 40$ | 64 | COUNTER0 | Counter bits 7:0 | Used to preload the counter to a |
| specified start point. Default setting is |  |  |  |  |
| all zeroes. |  |  |  |  |

The control/status register (CTRL_STAT) is an 8-bit register that defines the operation of the RTC. The control register can reset the RTC, enabling operation to begin with all zeroes in the counter. The RTC can be configured to clear upon a match with the Match
register, or it can continue to count while still setting the match signal. To enable the Fusion device to power up at a specific time or at periodic intervals, the RTC can be configured to turn on the 1.5 V voltage regulator. Table 2-16 details the CTRL_STAT settings.

Table 2-16 • RTC Control/Status Register

| Bit | Name | Description |
| :--- | :---: | :--- |
| 7 | rtc_rst | $\begin{array}{l}\text { RTC Reset: Writing a logic } 1 \text { to this bit causes an RTC reset. }{ }^{2} \text { Writing a logic } 0 \text { to this bit will allow } \\ \text { synchronous deassertion of reset after } 2 \text { ACM_CLK cycles if } V_{C C 33 U P}=1.3\end{array}$ |
| 6 | cntr_en | $\begin{array}{l}\text { Counter Enable: A logic } 1 \text { in this bit will enable the counter if the RTC is not in reset. } \\ \text { It takes } 64 \text { RTCCLK positive edges (1/2 of the pre-scaler division factor), after reset is removed and } \\ \text { cntr_en }=1 \text {, before the counter is incremented. }\end{array}$ |
| A logic 0 in this bit resets the pre-scaler and therefore suspends incrementing the counter, but the |  |  |
| counter is not reset. |  |  |
| Before writing to the counter registers, the counter must be disabled. |  |  |$\}$

## Notes:

1. Default state (set when $V_{C C 33 \cup P}=0$ ) for bits $0-7$ is logic 0 .
2. Reset of all RTC states (except this Control/Status register) occurs asynchronously if $V_{\text {CC33up }}=0$ or CTRL_STAT bit 7 (rtc_rst) is set to 1 .
3. Reset is removed synchronously after 2 rising edges of $A C M \_C L K$, following both $V_{C C 33 \cup P}=1$ and rtc_rst $=0$.
4. Counter will first increment on the 64th rising edge of RTCCLK after all of the following are true:
a. reset is removed
b. rstb_cnt (CTRL_STAT bit 1) is set to 1
c. cntr_en (CTRL_STAT bit 6) is set to 1
and will then increment every 128 RTCCLK cycles.

## Crystal Oscillator (Xtal Osc)

When used as the clock source for the RTC, the crystal oscillator will be configured by the RTC with the RTCXTLMODE[1:0] RTC macro pins. Refer to the "Crystal Oscillator" section on page 2-20 for specific details on crystal oscillator operation.
The crystal oscillator input to the RTC is divided by 128 , so bit 0 of the RTC toggles at the frequency of the crystal oscillator divided by 128 . The frequencies of the RTC are gated by those of the crystal oscillator; from 32.768 kHz to 20 MHz . When used with a 32.768 kHz crystal, bit 0 of the of RTC has a period of $\sim 7.8 \mathrm{~ms}$, and bit 7 has a period of 1 second.

## Voltage Regulator Initialization (VR Init)

The VR Init block determines voltage regulator behavior when the 3.3 V supply is valid. The Fusion devices support different use models. Some of these require the 1.5 V voltage regulator to turn on when the 3.3 V supply is stable. Other use models require additional conditions to be met before the 1.5 V VR turns on. Since the FPGA is not operating when the 3.3 V supply is off, the VR Init lets the user define VR behavior at design time. Two bits can be set within the core, which the VR Init will read as it comes out of reset and either turn on the VR or leave it in an off state.

## Voltage Regulator (VR) Logic

The Voltage Regulator Logic block, along with the VR, combines commands from the FPGA, RTC, VR Init block, $\mathrm{V}_{\text {CC33UP }}$ detector, and PUB pad, to determine whether or not the VR is enabled.
The VR can be enabled from several sources: the PUB pin, the RTC_MATCH signal from the RTC block, or triggered by the VR Init block. Once triggered, the VR will remain on. Only the FPGA fabric can disable the VR, unless the $\mathrm{V}_{\text {CC33A }}$ supply falls below the $\mathrm{V}_{\text {CC33UP }}$ threshold and a reset occurs.

### 1.5 V Voltage Regulator

The VR generates a 1.5 V power supply from the 3.3 V power supply. The 1.5 V output is intended to supply all 1.5 V needs of the Fusion device. This regulator requires an external bipolar pass transistor(Figure 2-29). The VR can drive up to 20 mA of current through the PTBASE pad. The amount of 1.5 V current available is dependent upon the gain of the external pass transistor used. Enable for this block is generated in the VR Logic block or from the PUB pin.
The 1.5 V is not supplied internally to the Fusion device. It must be routed externally to the $\mathrm{V}_{\mathrm{CC}}$ pins on the device. Therefore the user is not required to use the VR and can use an off-chip 1.5 V supply if desired.


## Voltage Regulator Power Supply Monitor (VRPSM)

As the functions of the VR Logic and Power System Monitor work closely together to control the power-up state of the FPGA core, these functions were combined into a single VRPSM macro (Figure 2-30).

The signals for the VRPSM macro are listed in Table 2-17. The PUB input comes from the PUB pin on the device and can be pulled low by a signal external to the Fusion device. This can be used to wake up the device. The inputs VRINITSTATE and RTCPSMMTACH come from the VR Init and RTC blocks, respectively, and either can initiate a VR power-up.


Figure 2-30 • VRPSM Macro
Table 2-17 • Signals for VRPSM Macro

| Signal Name | Number of Bits | Direction | Function |
| :--- | :---: | :---: | :--- |
| PUB | 1 | Input | Active low signal to power up the FPGA core via the 1.5 V <br> regulator. <br> In this reference design, PUB is on the top level connected to an <br> external switch. |
| VRPU | 1 | Input | When this pin is at logic '1', the FPGA core will be turned off via <br> the voltage regulator. |
| VRINITSTATE | 1 | Input | This feature is not used in this reference design and is not shown <br> in the macro generated by SmartGen. If used, the signal enables <br> you to set your voltage regulator output at power-up (ON or <br> OFF). |
| RTCPSMMATCH | 1 | Input | This feature is not used in this reference design. If used, this <br> active high signal is driven by the RTC's match signal to indicate <br> that the RTC counter value matches with the pre-defined Match <br> Register value set in SmartGen. |
| FPGAGOOD | 1 | Output | Logic '1' indicates that FPGA is logically functional. |
| PUCORE | 1 | Output | Logic '1' indicates that FPGA is logically functional. |

## Embedded Memories

Fusion devices include four types of embedded memory: Flash block, FlashROM, SRAM, and FIFO.

## Flash Memory Block

Fusion is the first FPGA that offers a Flash memory block (FB). Each FB block stores 2 Mbits of data. The Flash memory block macro is illustrated in Figure 2-31. The port pin name and descriptions are detailed on Table 2-18 on page 2-38. All Flash memory block signals are active high, except for CLK and active low RESET. All Flash memory operations are synchronous to the rising edge of CLK.


[^1]Fusion Family of Mixed-Signal Flash FPGAs

## Flash Memory Block Pin Names

Table 2-18 • Flash Memory Block Pin Names

| Interface Name | Width | Direction | Description |
| :---: | :---: | :---: | :---: |
| ADDR[17:0] | 18 | In | Byte offset into the FB. Byte based address. |
| AUXBLOCK | 1 | In | When asserted, the page addressed is used to access the auxiliary block within that page. |
| BUSY | 1 | Out | When asserted, indicates that the FB is performing an operation. |
| CLK | 1 | In | User interface clock. All operations and status are synchronous to the rising edge of this clock. |
| DATAWIDTH[1:0] | 2 | In | $\begin{aligned} & \hline \text { Data width } \\ & 00=1 \text { byte in RD/WD[7:0] } \\ & 01=2 \text { bytes in RD/WD[15:0] } \\ & 1 x=4 \text { bytes in RD/WD[31:0] } \end{aligned}$ |
| DISCARDPAGE | 1 | In | When asserted, the contents of the Page Buffer are discarded so that a new page write can be started. |
| ERASEPAGE | 1 | In | When asserted, the contents of the Page Buffer are discarded so that a new page write can be started. |
| LOCKREQUEST | 1 | In | When asserted, indicates to the JTAG controller that the FPGA interface is accessing the FB. |
| OVERWRITEPAGE | 1 | In | When asserted, the page addressed is overwritten with the contents of the Page Buffer if the page is writable. |
| OVERWRITEPROTEC T | 1 | In | When asserted, all program operations will set the overwrite protect bit of the page being programmed. |
| PAGESTATUS | 1 | In | When asserted with REN, initiates a read page status operation. |
| PAGELOSSPROTECT | 1 | In | When asserted, a modified Page Buffer must be programmed or discarded before accessing a new page. |
| PIPE | 1 | In | Adds a pipeline stage to the output for operation above 50 MHz . |
| PROGRAM | 1 | In | When asserted, writes the contents of the Page Buffer into the FB page addressed. |
| RD[31:0] | 32 | Out | Read data; data will be valid from the first non-busy cycle (BUSY=0) after REN has been asserted. |
| READNEXT | 1 | In | When asserted with REN, initiates a read-next operation. |
| REN | 1 | In | When asserted, initiates a read operation. |
| RESET | 1 | In | When asserted, resets the state of the FB (active low). |
| SPAREPAGE | 1 | In | When asserted, the sector addressed is used to access the spare page within that sector. |
| STATUS[1:0] | 2 | Out | Status of the last operation completed: <br> 00: Successful completion <br> 01: Read/Unprotect-Page: single error detected and corrected <br> Write: operation addressed a write-protected page <br> Erase-Page: protection violation <br> Program: Page Buffer is unmodified Protection violation <br> 10: Read/Unprotect-Page: two or more errors detected <br> 11: Write: attempt to write to another page before programming current page Erase-Page/Program: page write count has exceeded the 10-year retention threshold |
| UNPROTECTPAGE | 1 | In | When asserted, the page addressed is copied into the Page Buffer and the Page Buffer is made writable. |
| WD[31:0] | 32 | In | Write data |
| WEN | 1 | In | When asserted, store WD in the page buffer. |

All Flash memory block input signals are active high, except for RESET.

## Flash Memory Block Diagram

A simplified diagram of the Flash memory block is shown in Figure 2-32.


Figure 2-32 • Flash Memory Block Diagram
The logic consists of the following sub-blocks:

- Flash Array

Contains all stored data. The Flash array contains 64 sectors, and each sector contains 33 pages of data.

- Page Buffer

Is a page-wide volatile register. A page contains 8 blocks of data and an AUX block.

- Block Buffer

Contains the contents of the last block accessed. A block contains 128 data bits.

- ECC Logic

The FB stores error correction information with each block to perform single-bit error correction and double-bit error detection on all data blocks.

## Fusion Family of Mixed-Signal Flash FPGAs

## Flash Memory Block Addressing

Figure 2-33 shows a graphical representation of the Flash memory block.


Figure 2-33 • Flash Memory Block Organization
Each FB is partitioned into sectors, pages, blocks, and bytes. There are 64 sectors in an FB, and each sector contains 32 pages and 1 spare page. Each page contains 8 data blocks and 1 auxiliary block. Each data block contains 16 bytes of user data, and the auxiliary block contains 4 bytes of user data.
Addressing for the FB is shown in Table 2-19.
Table 2-19 • FB Address Bit Allocation ADDR[17:0]

| 17 | 12 | 11 | 7 | 6 | 4 | 3 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sector |  | Page | Block | Byte |  |  |  |

When the spare page of a sector is addressed (SPAREPAGE active), ADDR[11:7] are ignored.
When the Auxiliary block is addressed (AUXBLOCK active), ADDR[6:2] are ignored.
Note: The spare page of sector 0 is unavailable for any user data. Writes to this page will return an error, and reads will return all zeroes.
Data operations are performed in widths of 1 to 4 bytes. A write to a location in a page that is not already in the Page Buffer will cause the page to be read from the FB Array and stored in the Page Buffer. The block that was addressed during the write will be put into the Block Buffer and the data written by WD will overwrite the data in the Block Buffer. After the data is written to the Block Buffer, the Block Buffer is then written to the Page Buffer to keep both buffers in sync. Subsequent writes to the same block will overwrite the Block Buffer and the Page Buffer. A write to another block in the page will cause the addressed block to be loaded from the Page Buffer, and the write will be performed as described previously.
The data width can be selected dynamically via the DATAWIDTH input bus. The truth table for the data width settings is detailed in Table 2-20. The minimum resolvable address is one 8 -bit byte. For data widths greater than 8 bits, the corresponding address bits are ignored (when DATAWIDTH $=0$ (2 bytes), ADDR[0] is ignored and when DATAWIDTH $=10$ or 11 (4 bytes), ADDR[1:0] is ignored). Data pins are LSB-oriented and unused WD data pins must be grounded.

Table 2-20 • Data Width Settings

| DATAWIDTH[1:0] | Data Width |
| :--- | :---: |
| 00 | 1 byte [7:0] |
| 01 | 2 byte [15:0] |
| 10,11 | 4 bytes [31:0] |

## Flash Memory Block Protection

## Page Loss Protection

When the PAGELOSSPROTECT pin is set to logic 1, it prevents writes to any other page except the current page in the Page Buffer, until the page is either discarded or programmed.
A write to another page while the current page is page loss protected will return a STATUS of '11'.

## Overwrite Protection

Any page that is overwrite protected will result in the STATUS being set to '01' when an attempt is made to either write, program, or erase it. To set the Overwrite Protection state for a page, set the OVERWRITEPROTECT pin when a program operation is undertaken. To clear the Overwrite Protect state for a given page, an Unprotect Page operation must be performed on the page, and then the page must be programmed with the OVERWRITEPROTECT pin cleared to save the new page.

## LOCKREQUEST

The LOCKREQUEST signal is used to give the user interface control over simultaneous access of the FB from both the User and JTAG interfaces. When LOCKREQUEST is asserted, the JTAG interface will hold off any access attempts until LOCKREQUEST is deasserted.

## Flash Memory Block Operations

## FB Operation Priority

The FB provides for priority of operations when multiple actions are requested simultaneously. Table 2-21 shows the priority order (priority 0 is the highest).

Table 2-21 • FB Operation Priority

| Operation | Priority |
| :--- | :---: |
| System initialization | 0 |
| FB reset | 1 |
| Read | 2 |
| Write | 3 |
| Erase page | 4 |
| Program | 5 |
| Unprotect page | 6 |
| Discard page | 7 |

Access to the FB is controlled by the BUSY signal. The BUSY output is synchronous to the CLK signal. FB operations are only accepted in cycles where BUSY is logic 0.

## Write Operation

Write operations are initiated with the assertion of the WEN signal. Figure 2-34 on page 2-42 illustrates the multiple write operations.
When a write operation is initiated to a page that is currently not in the Page Buffer, the FB control logic will issue a BUSY signal to the user interface while the page is loaded from the FB Array into the Page Buffer. (Note: The number of clock cycles that the BUSY output is asserted during the load of the Page Buffer is variable.) After loading the page to the Page Buffer, the addressed data block is loaded from the Page Buffer into the Block Buffer. Subsequent writes to the same block of the page will incur no busy cycles. A write to another block in the page will assert BUSY for four cycles (five cycles when PIPE is asserted), to allow the data to be written to the Page Buffer and have the current block loaded into the Block Buffer.
Write operations are considered successful as long as the STATUS output is '00'. A non-zero STATUS indicates an error was detected during the operation and the write was not performed. Note that the STATUS output is "sticky;" it is unchanged until another operation is started.


Figure 2-34 • FB Write Waveform

Only one word can be written at a time. Write word width is controlled by the DATAWIDTH bus. Users are responsible for keeping track of the contents of the Page Buffer and when to program it to the array. Just like a regular RAM, writing to random addresses is possible. Users can write into the Page Buffer in any order, but will incur additional BUSY cycles. It is not necessary to modify the entire Page Buffer before saving it to nonvolatile memory.
Write errors include the following:

1. Attempting to write a page that is Overwrite Protected (STATUS = 01). The write is not performed.
2. Attempting to write to a page that is not in the Page Buffer when Page Loss Protection is enabled (STATUS = 11). The write is not performed.

## Program Operation

A program operation is initiated by asserting the PROGRAM signal on the interface. Program operations save the contents of the Page Buffer to the FB Array. Due to the technologies inherent in the FB, a program operation is a time consuming operation ( $\sim 8 \mathrm{~ms}$ ). While the FB is writing the data to the array, the BUSY signal will be asserted.

During a Program operation, the sector and page addresses on ADDR are compared with the stored address for the page (and sector) in the Page Buffer. If there is a mismatch between the two addresses, the program operation will be aborted and an error will be reported on the STATUS output.
It is possible to write the Page Buffer to a different page in memory. When asserting the PROGRAM pin, if OVERWRITEPAGE is asserted as well, the FB will write the contents of the Page Buffer to the sector and page designated on the ADDR inputs, if the destination page is not overwrite protected.
A program operation may be utilized to either modify the contents of the page in the Flash memory block or change the protections for the page. Setting the OVERWRITEPROTECT bit on the interface while asserting the PROGRAM pin will put the page addressed into Overwrite Protect Mode. Overwrite Protect Mode safeguards a page from being inadvertently overwritten during subsequent program or erase operations.
$\qquad$

Program operations that result in a STATUS value of ' 01 ' do not modify the addressed page. For all other values of STATUS, the addressed page is modified.
Program errors include the following:

1. Attempting to program a page that is Overwrite Protected $(S T A T U S=01)$
2. Attempting to program to a page that is not in the Page Buffer when the Page Buffer has entered Page Loss Protection mode (STATUS $=01$ )
3. Attempting to perform a program with OVERWRITEPAGE set when the page addressed has been Overwrite Protected $(S T A T U S=01)$
4. The Write Count of the page programmed exceeding the Write Threshold defined in the part specification (STATUS = 11)
5. The ECC Logic determining that there is an uncorrectable error within the programmed page (STATUS = 10)
6. Attempting to program to a page that is not in the Page Buffer when OVERWRITEPAGE is not set and the page in the Page Buffer is modified (STATUS = 01)
7. Attempting to program the page that is in the Page Buffer when the Page Buffer is not modified.
The waveform for a program operation is shown in Figure 2-35.


Figure 2-35 • FB Program Waveform

Note: OVERWRITEPAGE is only sampled when the PROGRAM or ERASEPAGE pins are asserted. OVERWRITEPAGE is ignored in all other operations.

## Erase Page Operation

The Erase Page operation is initiated when the ERASEPAGE pin is asserted. The Erase Page operation allows the user to erase (set user data to ' 0 ') any page within the FB.
The use of the OVERWRITEPAGE and PAGELOSSPROTECT pins is the same for erase as for a Program Page operation.
As with the Program Page operation, a STATUS of '01' indicates that the addressed page is not erased.

A waveform for an Erase Page operation is shown in Figure 2-36.
Erase errors include the following:

1. Attempting to erase a page that is Overwrite Protected $(S T A T U S=01)$
2. Attempting to erase a page that is not in the Page Buffer when the Page Buffer has entered Page Loss Protection mode (STATUS = 01)
3. The Write Count of the erased page exceeding the Write Threshold defined in the part specification (STATUS = 11)
4. The ECC Logic determining that there is an uncorrectable error within the erased page (STATUS = 10)


Figure 2-36 • FB Erase Page Waveform

## Read Operation

Read operations are designed to read data from the FB Array, Page Buffer, Block Buffer or status registers. Read operations support a normal read and a read-ahead mode (done by asserting READNEXT). Also, the timing for Read operations is dependent on the setting of PIPE.

The following diagrams illustrate representative timing for Non-Pipe Mode (Figure 2-37) and Pipe Mode (Figure 2-38) reads of the Flash memory block interface.


Figure 2-37 • Read Waveform (Non-Pipe Mode, 32-Bit Access)


Figure 2-38 • Read Waveform (Pipe Mode, 32-Bit Access)

## Fusion Family of Mixed-Signal Flash FPGAs

The following error indications are possible for Read operations:

1. STATUS $=01$ when a single-bit data error was detected and corrected within the block addressed.
2. STATUS $=10$ when a double-bit error was detected in the block addressed (note that the error is uncorrected).

In addition to data reads, users can read the status of any page in the FB by asserting PAGESTATUS along with REN. The format of the data returned by a page status read is shown in Table 2-22, and the definition of the page status bits is shown in Table 2-23.

Table 2-22 • Page Status Read Data Format

| 31 | 8 | 7 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Write Count | Reserved |  | Over Threshold | Read Protected | Write Protected | Overwrite Protected |  |

Table 2-23 • Page Status Bit Definition

| Page Status Bits | Bit Definition |
| :--- | :--- |
| $31-8$ | The number of times the page addressed has been programmed/erased |
| $7-4$ | Reserved; read as 0 |
| 3 | Over threshold indicator (see the "Program Operation " section on page 2-42) |
| 2 | Read protected; read protect bit for page which is set via the JTAG interface |
| 1 | Write protected; write protect bit for page which is set via the JTAG interface |
| 0 | Overwrite protected; designates that the user has set the OVERWRITEPROTECT bit on the interface while doing <br> a program operation. The page cannot be written without first performing an Unprotect Page operation. |

$\qquad$

## Read Next Operation

The Read Next operation is a feature by which the next block relative to the block in the Block Buffer is read from the FB Array while performing reads from the Block Buffer. The goal is to minimize wait states during consecutive sequential read operations.
The Read Next operation is performed in a predetermined manner because it does look-ahead reads. The general look-ahead function is as follows:

- Within a page, the next block fetched will be the next in the linear address.
- When reading the last data block of a page, it will fetch the first block of the next page.
- When reading spare pages, it will read the first block of the next sector's spare page.
- Reads of the last sector will wrap around to sector 0.
- Reads of Auxiliary blocks will read the next linear page's Auxiliary block.

When an address on the ADDR input does not agree with the predetermined look-ahead address, there is a time penalty for this access. The FB will be busy finishing the current look-ahead read before it can start the next read. The worst case is a total of nine BUSY cycles before data is delivered.

The Non-Pipe Mode and Pipe Mode waveforms for Read Next operations are illustrated in Figure 2-39 and Figure 2-40.


Figure 2-39 • Read Next Waveform (Non-Pipe Mode, 32-Bit Access)


Figure 2-40 • Read Next WaveForm (Pipe Mode, 32-Bit Access)

## Unprotect Page Operation

An Unprotect Page operation will clear the protection for a page addressed on the ADDR input. It is initiated by setting the UNPROTECTPAGE signal on the interface along with the page address on ADDR.

If the page is not in the Page Buffer, the Unprotect Page operation will copy the page into the Page Buffer. The copy page operation occurs only if the current page in the Page Buffer is not Page Loss Protected.
The waveform for an Unprotect Page operation is shown in Figure 2-41.


Figure 2-41 • FB Unprotected Page Waveform
The Unprotect Page operation can incur the following error conditions:

1. If the copy of the page to the Page Buffer determines that the page has a single-bit correctable error in the data, it will report a STATUS = 01 .
2. If the address on ADDR does not match the address of the Page Buffer, PAGELOSSPROTECT is asserted, and the Page Buffer has been modified, then the STATUS $=11$ and the addressed page is not loaded into the Page Buffer.
3. If the copy of the page to the Page Buffer determines that at least one block in the page has a double-bit uncorrectable error, then STATUS = 10 and the Page Buffer will contain the corrupted data.

## Discard Page Operation

If the contents of the modified Page Buffer have to be discarded, the DISCARDPAGE signal should be asserted. This command results in the Page Buffer being marked as unmodified.

The timing for the operation is shown in Figure 2-42. The BUSY signal will remain asserted until the operation has completed.


[^2]
## Flash Memory Block Characteristics



## Figure 2-43 • Reset Timing Diagram

## Table 2-24 • Flash Memory Block Timing

Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, Typical Case, $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}$

| Parameter | Description | Min. | Typ. | Max. | Units |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $t_{\text {CLKQ5CYC }}$ | Clock-to-Q in 5-cycle read mode of the Control Logic |  | 7.5 |  | ns |
| $\mathrm{t}_{\text {CLKQ6CYC }}$ | Clock-to-Q in 6-cycle read mode of the Control Logic |  | 2.3 |  | ns |
| $\mathrm{t}_{\text {DSUNVM }}$ | Data Input Setup time for the Control Logic | 1.5 |  | ns |  |
| $\mathrm{t}_{\text {DHNVM }}$ | Data Input Hold time for the Control Logic | 0 |  | ns |  |
| $\mathrm{t}_{\text {ASUNVM }}$ | Address Input Setup time for the Control Logic | 4.9 |  | ns |  |
| $\mathrm{t}_{\text {AHNVM }}$ | Address Input Hold time for the Control Logic | 0 |  | ns |  |
| $\mathrm{t}_{\text {MPWARNVM }}$ | Asynchronous Reset Minimum Pulse Width for the Control Logic | 10 |  | ns |  |
| $t_{\text {MPWCLKNVM }}$ | Clock Minimum Pulse Width for the Control Logic | 5 |  | ns |  |

## FlashROM

Fusion devices have 1 kbit of on-chip nonvolatile Flash memory that can be read from the FPGA core fabric. The FlashROM is arranged in 8 banks of 128 bits during programming. The 128 bits in each bank are addressable as 16 bytes during the read back of the FlashROM from the FPGA core (Figure 2-44).

The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly from the FPGA core. When programming, each of the 8 128-bit banks can be selectively reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports a synchronous read and can be read on byte boundaries. The upper 3 bits of the FlashROM address from the FPGA core define the bank that is being accessed. The lower 4 bits of the FlashROM address from the FPGA core define which of the 16 bytes in the bank is being accessed.

The maximum FlashROM access clock is 20 MHz . Figure 2-45 shows the timing behavior of FlashROM access cycle- the address has to be setup on the rising edge of clock for DOUT to be valid on the next clock falling edge.
If the address is unchanged for 2 cycles:

- DO becomes invalid 10 ns after the second rising edge of clock
- D0 becomes valid again 10 ns after second falling edge
If the address unchanged for 3 cycles:
- DO becomes invalid 10 ns after the second rising edge of clock
- DO becomes valid again 10 ns after second falling edge
- DO becomes invalid 10 ns after the third rising edge of clock
- DO becomes valid again 10 ns after third falling edge

|  |  | Byte Number in Bank |  |  |  |  | 4 LSB of ADDR (READ) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| ${ }^{\omega}$ 䍖 | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ) | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| O | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\stackrel{3}{\square}$ | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 分 | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Figure 2-44 • FlashROM Architecture

## FlashROM Characteristics



Figure 2-45 • FlashROM Timing Diagram

## SRAM and FIFO

All Fusion devices have SRAM blocks along the north side of the device. Additionally, AFS600 and AFS1500 devices have an SRAM block on the south side of the device. To meet the needs of high-performance designs, the memory blocks operate strictly in synchronous mode for both read and write operations. The read and write clocks are completely independent, and each may operate at any desired frequency less than or equal to 350 MHz .

- $4 \mathrm{k} \times 1,2 \mathrm{k} \times 2,1 \mathrm{k} \times 4,512 \times 9$ (dual-port RAM—two read, two write or one read, one write)
- $512 \times 9,256 \times 18$ (two-port RAM—one read and one write)
- Sync write, sync pipelined/nonpipelined read

The Fusion SRAM memory block includes dedicated FIFO control logic to generate internal addresses and external flag logic (Full, Empty, AFULL, AEMPTY).
During RAM operation, addresses are sourced by the user logic and the FIFO controller is ignored. In FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by internal MUXes. Refer to Figure 2-46 for more information about the implementation of the embedded FIFO controller.

The Fusion architecture enables the read and write sizes of RAMs to be organized independently, allowing for bus conversion. This is done with the WWW (write width) and RW (read width) pins. The different $\mathrm{D} \times \mathrm{W}$ configurations are $256 \times 18,512 \times 9,1 \mathrm{k} \times 4,2 \mathrm{k} \times 2$, and $4 \mathrm{k} \times 1$. For example, the write size can be set to $256 \times 18$ and the read size to $512 \times 9$.
Both the write and read widths for the RAM blocks can be specified independently with the WW (write width) and RW (read width) pins. The different DxW configurations are $256 \times 18,512 \times 9,1 \mathrm{k} \times 4,2 \mathrm{k} \times 2$, and $4 \mathrm{k} \times 1$.
Refer to the allowable RW and WW values supported for each of the RAM macro types in Table 2-25 on page 2-53.
When widths of one, two, or four are selected, the ninth bit is unused. For example, when writing nine-bit values and reading four-bit values, only the first four bits and the second four bits of each nine-bit value are addressable for read operations. The ninth bit is not accessible.
Conversely, when writing four-bit values and reading nine-bit values, the ninth bit of a read operation will be undefined. The RAM blocks employ Little Endian byte order for read and write operations.


Figure 2-46 • Fusion RAM Block with Embedded FIFO Controller

## Fusion Family of Mixed-Signal Flash FPGAs

## RAM4K9 Description



Figure 2-47 • RAM4K9

The following signals are used to configure the RAM4K9 memory element:

## WIDTHA and WIDTHB

These signals enable the RAM to be configured in one of four allowable aspect ratios (Table 2-25).
Table 2-25 • Allowable Aspect Ratio Settings for
WIDTHA[1:0]

| WIDTHA1, WIDTHAO | WIDTHB1, WIDTHB0 | D $\times$ W |
| :--- | :---: | :---: |
| 00 | 00 | $4 \mathrm{k} \times 1$ |
| 01 | 01 | $2 \mathrm{k} \times 2$ |
| 10 | 10 | $1 \mathrm{k} \times 4$ |
| 11 | 11 | $512 \times 9$ |

Note: The aspect ratio settings are constant and cannot be changed on the fly.

## BLKA and BLKB

These signals are active low and will enable the respective ports when asserted. When a BLKx signal is deasserted, the corresponding port's outputs hold the previous value.

## WENA and WENB

These signals switch the RAM between read and write modes for the respective ports. A low on these signals indicates a write operation, and a high indicates a read.

## CLKA and CLKB

These are the clock signals for the synchronous read and write operations. These can be driven independently or with the same driver.

## PIPEA and PIPEB

These signals are used to specify pipelined read on the output. A low on PIPEA or PIPEB indicates a nonpipelined read and the data appears on the corresponding output in the same clock cycle. A high indicates a pipelined read and data appears on the corresponding output in the next clock cycle.

## WMODEA and WMODEB

These signals are used to configure the behavior of the output when RAM is in write mode. A low on these signals makes the output retain data from the previous read. A high indicates pass-through behavior, wherein the data being written will appear immediately on the output. This signal is overridden when the RAM is being read.

## RESET

This active low signal resets the output to zero and disables reads and/or writes from the SRAM block as well as clears the data hold registers when asserted. It does not reset the contents of the memory.

## ADDRA and ADDRB

These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is specified, the unused high-order bits must be grounded (Table 2-26).

Table 2-26 • Address Pins Unused/Used for Various Supported Bus Widths

| Dxw | ADDRx |  |
| :--- | :---: | :---: |
|  | Unused | Used |
| $4 \mathrm{k} \times 1$ | None | $[11: 0]$ |
| $2 \mathrm{k} \times 2$ | $[11]$ | $[10: 0]$ |
| $1 \mathrm{k} \times 4$ | $[11: 10]$ | $[9: 0]$ |
| $512 \times 9$ | $[11: 9]$ | $[8: 0]$ |

Note: The " $x$ " in ADDRx implies $A$ or $B$.

## DINA and DINB

These are the input data signals, and they are nine bits wide. Not all nine bits are valid in all configurations. When a data width less than nine is specified, unused high-order signals must be grounded (Table 2-27).

## DOUTA and DOUTB

These are the nine-bit output data signals. Not all nine bits are valid in all configurations. As with DINA and DINB, high-order bits may not be used (Table 2-27). The output data on unused pins is undefined.

Table 2-27 • Unused/Used Input and Output Data Pins for Various Supported Bus Widths

| Dxw | DINx/DOUTx |  |
| :--- | :---: | :---: |
|  | Unused | Used |
| $4 k \times 1$ | $[8: 1]$ | $[0]$ |
| $2 k \times 2$ | $[8: 2]$ | $[1: 0]$ |
| $1 \mathrm{k} \times 4$ | $[8: 4]$ | $[3: 0]$ |
| $512 \times 9$ | None | $[8: 0]$ |

Note: The " $x$ " in DINx and DOUTx implies $A$ or $B$.

## Fusion Family of Mixed-Signal Flash FPGAs

## RAM512X18 Description



Figure 2-48 • RAM512X18

RAM512X18 exhibits slightly different behavior from the RAM4K9, as it has dedicated read and write ports.

## WW and RW

These signals enable the RAM to be configured in one of the two allowable aspect ratios (Table 2-28).

Table 2-28 • Aspect Ratio Settings for WW[1:0]

| WW[1:0] | RW[1:0] | D×W |
| :--- | :---: | :---: |
| 01 | 01 | $512 \times 9$ |
| 10 | 10 | $256 \times 18$ |
| 00,11 | 00,11 | Reserved |

## WD and RD

These are the input and output data signals, and they are 18 bits wide. When a $512 \times 9$ aspect ratio is used for write, WD[17:9] are unused and must be grounded. If this aspect ratio is used for read, then RD[17:9] are undefined.

## WADDR and RADDR

These are read and write addresses, and they are nine bits wide. When the $256 \times 18$ aspect ratio is used for write or read, WADDR[8] or RADDR[8] are unused and must be grounded.

## WCLK and RCLK

These signals are the write and read clocks, respectively. They are both active high.

## WEN and REN

These signals are the write and read enables, respectively. They are both active low by default. These signals can be configured as active high.

## RESET

This active low signal resets the output to zero and disables reads and/or writes from the SRAM block as well as clears the data hold registers when asserted. It does not reset the contents of the memory.

## PIPE

This signal is used to specify pipelined read on the output. A low on PIPE indicates a nonpipelined read and the data appears on the output in the same clock cycle. A high indicates a pipelined read and data appears on the output in the next clock cycle.

## Clocking

The dual-port SRAM blocks are only clocked on the rising edge. SmartGen allows falling-edge triggered clocks by adding inverters to the netlist, hence achieving dual-port SRAM blocks that are clocked on either edge (rising or falling). For dual-port SRAM, each port can be clocked on either edge or by separate clocks, by port.

Fusion devices support inversion (bubble pushing) throughout the FPGA architecture, including the clock input to the SRAM modules. Inversions added to the SRAM clock pin on the design schematic or in the HDL code will be automatically accounted for during design compile without incurring additional delay in the clock path.
The two-port SRAM can be clocked on the rising edge or falling edge of WCLK and RCLK.
If negative-edge RAM and FIFO clocking is selected for memory macros, clock edge inversion management (bubble pushing) is automatically used within the Fusion development tools, without performance penalty.

## Modes of Operation

There are two read modes and one write mode:

- Read Nonpipelined (synchronous-one clock edge): In the standard read mode, new data is driven onto the RD bus in the same clock cycle following RA and REN valid. The read address is registered on the read port clock active edge and data appears at RD after the RAM access time. Setting PIPE to OFF enables this mode.
- Read Pipelined (synchronous-two clock edges): The pipelined mode incurs an additional clock delay from the address to the data but enables operation at a much higher frequency. The read address is registered on the read port active clock edge, and the read data is registered and appears at RD after the second read clock edge. Setting PIPE to ON enables this mode.
- Write (synchronous-one clock edge): On the write clock active edge, the write data is written into the SRAM at the write address when WEN is high. The setup times of the write address, write enables, and write data are minimal with respect to the write clock. Write and read transfers are described with timing requirements in the "SRAM Characteristics" section on page 2-56 and "FIFO Characteristics" section on page 2-63.


## RAM Initialization

Each SRAM block can be individually initialized on power-up by means of the JTAG port using the UJTAG mechanism (refer to the "JTAG IEEE 1532" section on page 2-172 and the Fusion SRAM/FIFO Blocks application note). The shift register for a target block can be selected and loaded with the proper bit configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation.

## SRAM Characteristics

## Timing Waveforms



Figure 2-49 RAM Read for Flow-Through Output


Figure 2-50 • RAM Read for Pipelined Output


DO


Figure 2-51 • RAM Write, Output Retained (WMODE = 0)


Figure 2-52 • RAM Write, Output as Write Data (WMODE = 1)


Figure 2-53 • One Port Write/Other Port Read Same


Figure 2-54 • RAM Reset

## Timing Characteristics

## Table 2-29 • RAM4K9

Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

| Parameter | Description | $\mathbf{- 2}$ | $\mathbf{- 1}$ | Std. | Units |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {AS }}$ | Address Setup time | 0.25 | 0.28 | 0.33 | ns |
| $\mathrm{t}_{\text {AH }}$ | Address Hold time | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {ENS }}$ | REN_B,WEN_B Setup time | 0.14 | 0.16 | 0.19 | ns |
| $\mathrm{t}_{\text {ENH }}$ | REN_B, WEN_B Hold time | 0.10 | 0.11 | 0.13 | ns |
| $\mathrm{t}_{\text {BKS }}$ | BLK_B Setup time | 0.23 | 0.27 | 0.31 | ns |
| $\mathrm{t}_{\text {BKH }}$ | BLK_B Hold time | 0.02 | 0.02 | 0.02 | ns |
| $\mathrm{t}_{\text {DS }}$ | Input data (DI) Setup time | 0.18 | 0.21 | 0.25 | ns |
| $\mathrm{t}_{\text {DH }}$ | Input data (DI) Hold time | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {CKQ1 }}$ | Clock High to New Data Valid on DO (output retained, WMODE $=0$ ) | 1.79 | 2.03 | 2.39 | ns |
|  | Clock High to New Data Valid on DO (flow-through, WMODE $=1)$ | 2.36 | 2.68 | 3.15 | ns |
| $\mathrm{t}_{\text {CKQ2 }}$ | Clock HIGH to New Data Valid on DO (pipelined) | 0.89 | 1.02 | 1.20 | ns |
| $\mathrm{t}_{\text {RSTBQ }}$ | RESET_B Low to Data Out Low on DO (flow through) | 0.92 | 1.05 | 1.23 | ns |
|  | RESET_B Low to Data Out Low on DO (pipelined) | 0.92 | 1.05 | 1.23 | ns |
| $\mathrm{t}_{\text {REMRSTB }}$ | RESET_B Removal | 0.25 | 0.28 | 0.33 | ns |
| $\mathrm{t}_{\text {RECRSTB }}$ | RESET_B Recovery | 1.49 | 1.68 | 1.98 | ns |
| $\mathrm{t}_{\text {MPWRSTB }}$ | RESET_B Minimum Pulse Width | 0.22 | 0.25 | 0.29 | ns |
| $\mathrm{t}_{\text {CYC }}$ | Clock Cycle time | 1.99 | 2.26 | 2.66 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.
Table 2-30 • RAM512X18
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

| Parameter | Description | $\mathbf{- 2}$ | $\mathbf{- 1}$ | Std. | Units |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {AS }}$ | Address Setup time | 0.25 | 0.28 | 0.33 | ns |
| $\mathrm{t}_{\text {AH }}$ | Address Hold time | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {ENS }}$ | REN_B,WEN_B Setup time | 0.18 | 0.20 | 0.24 | ns |
| $\mathrm{t}_{\text {ENH }}$ | REB_B, WEN_B Hold time | 0.06 | 0.07 | 0.08 | ns |
| $\mathrm{t}_{\text {DS }}$ | Input data (DI) Setup time | 0.18 | 0.21 | 0.25 | ns |
| $\mathrm{t}_{\text {DH }}$ | Input data (DI) Hold time | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {CKQ1 }}$ | Clock High to New Data Valid on DO (output retained, WMODE = 0) | 2.16 | 2.46 | 2.89 | ns |
| $\mathrm{t}_{\text {CKQ2 }}$ | Clock High to New Data Valid on DO (pipelined) | 0.90 | 1.02 | 1.20 | ns |
| $\mathrm{t}_{\text {RSTBQ }}$ | RESET_B Low to Data Out Low on DO (flow through) | 0.92 | 1.05 | 1.23 | ns |
|  | RESET_B Low to Data Out Low on DO (pipelined) | 0.92 | 1.05 | 1.23 | ns |
| $\mathrm{t}_{\text {REMRSTB }}$ | RESET_B Removal | 0.25 | 0.28 | 0.33 | ns |
| $\mathrm{t}_{\text {RECRSTB }}$ | RESET_B Recovery | 1.49 | 1.68 | 1.98 | ns |
| $\mathrm{t}_{\text {MPWRSTB }}$ | RESET_B Minimum Pulse Width | 0.22 | 0.25 | 0.29 | ns |
| $\mathrm{t}_{\text {CYC }}$ | Clock Cycle time | 1.99 | 2.26 | 2.66 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

## Fusion Family of Mixed-Signal Flash FPGAs

## FIFO4K18 Description



Figure 2-55 • FIFO4KX18

The following signals are used to configure the FIFO4K18 memory element:

## WW and RW

These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 2-31).

Table 2-31 • Aspect Ratio Settings for WW[2:0]

| WW2, WW1, WW0 | RW2, RW1, RW0 | $\mathbf{D \times W}$ |
| :--- | :---: | :---: |
| 000 | 000 | $4 \mathrm{k} \times 1$ |
| 001 | 001 | $2 \mathrm{k} \times 2$ |
| 010 | 010 | $1 \mathrm{k} \times 4$ |
| 011 | 011 | $512 \times 9$ |
| 100 | 100 | $256 \times 18$ |
| $101,110,111$ | $101,110,111$ | Reserved |

## WBLK and RBLK

These signals are active low and will enable the respective ports when low. When the RBLK signal is high, the corresponding port's outputs hold the previous value.

## WEN and REN

Read and write enables. WEN is active low and REN is active high by default. These signals can be configured as active high or low.

## WCLK and RCLK

These are the clock signals for the synchronous read and write operations. These can be driven independently or with the same driver.

## RPIPE

This signal is used to specify pipelined read on the output. A low on RPIPE indicates a nonpipelined read and the data appears on the output in the same clock cycle. A high indicates a pipelined read and data appears on the output in the next clock cycle.

## RESET

This active low signal resets the output to zero when asserted. It resets the FIFO counters. It also sets all the RD pins low, the Full and AFULL pins low, and the Empty and AEMPTY pins high (Table 2-32).

## Table 2-32 • Input Data Signal Usage for Different Aspect

 Ratios| DxW | WD/RD Unused |
| :--- | :---: |
| $4 \mathrm{k} \times 1$ | $\mathrm{WD}[17: 1], \operatorname{RD}[17: 1]$ |
| $2 \mathrm{k} \times 2$ | $\mathrm{WD}[17: 2], \operatorname{RD}[17: 2]$ |
| $1 \mathrm{k} \times 4$ | $\mathrm{WD}[17: 4], \operatorname{RD}[17: 4]$ |
| $512 \times 9$ | $\mathrm{WD}[17: 9], \operatorname{RD}[17: 9]$ |
| $256 \times 18$ | - |

## WD

This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data width less than 18 is specified, unused higher-order signals must be grounded (Table 2-32).

## RD

This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD bus, highorder bits become unusable if the data width is less than 18. The output data on unused pins is undefined (Table 2-32).

## ESTOP, FSTOP

ESTOP is used to stop the FIFO read counter from further counting once the FIFO is empty (i.e., the Empty flag goes high). A high on this signal inhibits the counting.
FSTOP is used to stop the FIFO write counter from further counting once the FIFO is full (i.e., the Full flag goes high). A high on this signal inhibits the counting.
For more information on these signals, refer to the "ESTOP and FSTOP Usage" section on page 2-62.

## FULL, EMPTY

When the FIFO is full and no more data can be written, the Full flag asserts high. The Full flag is synchronous to WCLK to inhibit writing immediately upon detection of a full condition and to prevent overflows. Since the write address is compared to a resynchronized (and thus timedelayed) version of the read address, the Full flag will remain asserted until two WCLK active edges after a read operation eliminates the full condition.
When the FIFO is empty and no more data can be read, the Empty flag asserts high. The Empty flag is synchronous to RCLK to inhibit reading immediately upon detection of an empty condition and to prevent underflows. Since the read address is compared to a resynchronized (and thus time delayed) version of the write address, the Empty flag will remain asserted until two RCLK active edges, after a write operation, removes the empty condition.
For more information on these signals, refer to the "FIFO Flag Usage Considerations" section on page 2-62.

## AFULL, AEMPTY

These are programmable flags and will be asserted on the threshold specified by AFVAL and AEVAL, respectively.
When the number of words stored in the FIFO reaches the amount specified by AEVAL while reading, the AEMPTY output will go high. Likewise, when the number of words stored in the FIFO reaches the amount specified by AFVAL while writing, the AFULL output will go high.

## AFVAL, AEVAL

The AEVAL and AFVAL pins are used to specify the almost-empty and almost-full threshold values, respectively. They are 12-bit signals. For more information on these signals, refer to the "FIFO Flag Usage Considerations" section on page 2-62.

## ESTOP and FSTOP Usage

The ESTOP pin is used to stop the read counter from counting any further once the FIFO is empty (i.e., the EMPTY flag goes high). Likewise, the FSTOP pin is used to stop the write counter from counting any further once the FIFO is full (i.e., the Full flag goes high).
The FIFO counters in the Fusion device start the count at 0 , reach the maximum depth for the configuration (e.g., 511 for a $512 \times 9$ configuration), and then restart at 0 . An example application for the ESTOP, where the read counter keeps counting, would be writing to the FIFO once and reading the same content over and over without doing another write.

## FIFO Flag Usage Considerations

The AEVAL and AFVAL pins are used to specify the 12-bit AEMPTY and AFULL threshold values, respectively. The FIFO contains separate 12-bit write address (WADDR) and read address (RADDR) counters. WADDR is incremented every time a write operation is performed, and RADDR is incremented every time a read operation is performed. Whenever the difference between WADDR and RADDR is greater than or equal to AFVAL, the AFULL output is asserted. Likewise, whenever the difference between WADDR and RADDR is less than or equal to AEVAL, the AEMPTY output is asserted. To handle different read and write aspect ratios, AFVAL and AEVAL are expressed in terms of total data bits instead of total data words. When users specify AFVAL and AEVAL in terms of read or write words, the SmartGen tool translates them into bit addresses and configures these signals automatically. SmartGen configures the AFULL flag, AFULL, to assert when the write address exceeds the read address by at least a predefined value. In a $2 k \times 8$ FIFO, for example, a value of 1,500 for AFVAL means that the AFULL flag will be asserted after a write when the difference between the write address and the read address reaches 1,500 (there have been at least 1500 more writes than reads). It will stay asserted until the difference between the write and read addresses drops below 1,500.

The AEMPTY flag is asserted when the difference between the write address and the read address is less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY flag will be asserted when a read causes the difference between the write address and the read address to drop to 200 . It will stay asserted until that difference rises above 200. Note that the FIFO can be configured with different read and write widths; in this case the AFVAL setting is based on the number of write data entries and the AEVAL setting is based on the number of read data entries. For aspect ratios of $512 \times 9$ and $256 \times 18$, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL. The number of words must be multiplied by 8 and 16 , instead of 9 and 18. The SmartGen tool automatically uses the proper values. To avoid half-words being written or read, which could happen if different read and write aspect ratios are specified, the FIFO will assert Full or Empty as soon as at least a minimum of one word cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read, FIFO will remain in the Empty state when the first word is written. This occurs even if the FIFO is not completely empty, because in this case a complete word cannot be read. The same is applicable in the Full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The FULL flag will remain asserted because a complete word cannot be written at this point.

## FIFO Characteristics

## Timing Waveforms



WA/RA
(Address Counter) MATCH (A

Figure 2-56 • FIFO Reset


Figure 2-57 • FIFO EMPTY Flag and AEMPTY Flag Assertion

## Fusion Family of Mixed-Signal Flash FPGAs



Figure 2-58 • FIFO FULL and AFULL Flag Assertion


Figure 2-59 • FIFO EMPTY Flag and AEMPTY Flag Deassertion
$\qquad$
Fusion Family of Mixed-Signal Flash FPGAs


Figure 2-60 • FIFO FULL Flag and AFULL Flag Deassertion

## Timing Characteristics

Table 2-33 • FIFO
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

| Parameter | Description | -2 | -1 | Std. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {ENS }}$ | REN_B,WEN_B Setup time | 0.91 | 1.04 | 1.22 | ns |
| tenh | REN_B, WEN_B Hold time | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {BKS }}$ | BLK_B Setup time | 0.25 | 0.29 | 0.34 | ns |
| $\mathrm{t}_{\text {BKH }}$ | BLK_B Hold time | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {DS }}$ | Input data (DI) Setup time | 0.18 | 0.21 | 0.25 | ns |
| $t_{\text {DH }}$ | Input data (DI) Hold time | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {CKQ1 }}$ | Clock High to New Data Valid on DO (flow-through) | 2.36 | 2.68 | 3.15 | ns |
| $\mathrm{t}_{\text {CKQ2 }}$ | Clock High to New Data Valid on DO (pipelined) | 0.89 | 1.02 | 1.20 | ns |
| $t_{\text {RCKEF }}$ | RCLK High to Empty Flag Valid | 1.72 | 1.96 | 2.30 | ns |
| twCKFF | WCLK High to Full Flag Valid | 1.63 | 1.86 | 2.18 | ns |
| ${ }^{\text {t }}$ CKAF | Clock High to Almost Empty/Full Flag Valid | 3.72 | 4.24 | 4.99 | ns |
| $\mathrm{t}_{\text {RSTFG }}$ | RESET_B Low to Empty/Full Flag valid | 1.69 | 1.93 | 2.27 | ns |
| $\mathrm{t}_{\text {RSTAF }}$ | RESET_B Low to Almost-Empty/Full Flag Valid | 3.66 | 4.17 | 4.90 | ns |
| trstbq | RESET_B Low to Data out Low on DO (flow-through) | 0.92 | 1.05 | 1.23 | ns |
|  | RESET_B Low to Data out Low on DO (pipelined) | 0.92 | 1.05 | 1.23 | ns |
| $t_{\text {REMRSTB }}$ | RESET_B Removal | 0.29 | 0.33 | 0.38 | ns |
| $t_{\text {RECRSTB }}$ | RESET_B Recovery | 1.50 | 1.71 | 2.01 | ns |
| $\mathrm{t}_{\text {MPWRSTB }}$ | RESET_B Minimum Pulse Width | 0.30 | 0.30 | 0.30 | ns |
| $\mathrm{t}_{\mathrm{CYC}}$ | Clock Cycle time | 2.79 | 2.79 | 2.79 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

## Analog Block

With the Fusion family, Actel has introduced the world's first mixed-mode FPGA solution. Supporting a robust analog peripheral mix, Fusion devices will support a wide variety of applications. It is this Analog Block that separates Fusion from all other FPGA solutions on the market today.
By combining both Flash and high-speed CMOS processes in a single chip, these devices offer the best of both worlds. The high-performance CMOS is used for building RAM resources. These high performance structures support device operation up to 350 MHz . Additionally, the advanced Actel $0.13 \mu \mathrm{~m}$ Flash process incorporates high-voltage transistors and a high-isolation, triple-well process. Both of these are suited for the Flash-based programmable logic and nonvolatile memory structures.
High-voltage transistors support the integration of analog technology in several ways. They aid in noise immunity so that the analog portions of the chip can be better isolated from the digital portions, increasing analog accuracy. Because they support high voltages, Actel Flash FPGAs can be connected directly to highvoltage input signals, eliminating the need for external resistor divider networks, reducing component count, and increasing accuracy. By supporting higher internal voltages, the Actel advanced Flash process enables highdynamic range on analog circuitry, increasing precision and signal/noise ratio. Actel Flash FPGAs also drive highvoltage outputs, eliminating the need for external level shifters and drivers.
The unique triple-well process enables the integration of high-performance analog features with increased noise immunity and better isolation. By increasing the efficiency of analog design, the triple-well process also enables a smaller overall design size, reducing die size and cost.
The Analog Block consists of the Analog Quad I/O structure, real-time counter (for details refer to the "RealTime Counter System" section on page 2-31), analog to digital converter (ADC), and analog configuration multiplexer (ACM). All of these elements are combined in the single Analog Block macro, with which the user implements this functionality (Figure 2-61).

Figure 2-61 • Analog Block Macro

Fusion Family of Mixed-Signal Flash FPGAs

Table 2-34 describes each pin in the Analog Block. Each function within the Analog Block will be explained in detail in in the following sections.

Table 2-34 • Analog Block Pin Description

| Signal Name | Number of Bits | Direction | Function | Location of Details |
| :---: | :---: | :---: | :---: | :---: |
| VAREF | 1 | Input/Output | Voltage reference for ADC; used as either input or output, depending on VREFSEL. Needs to connect a 10 uF capacitor with placement as close as to the VAREF pin. | ADC |
| GNDREF | 1 | Input | External ground reference | ADC |
| MODE[3:0] | 4 | Input | ADC operating mode | ADC |
| SYSCLK | 1 | Input | External system clock |  |
| TVC[7:0] | 8 | Input | Clock divide control | ADC |
| STC[7:0] | 8 | Input | Sample time control | ADC |
| ADCSTART | 1 | Input | Start of conversion | ADC |
| PWRDWN | 1 | Input | Comparator power-down if 1 | ADC |
| ADCRESET | 1 | Input | ADC initialize if 1 | ADC |
| BUSY | 1 | Output | 1 - Running conversion | ADC |
| CALIBRATE | 1 | Output | 1 - Power-up calibration | ADC |
| DATAVALID | 1 | Output | 1 - Valid conversion result | ADC |
| RESULT[11:0] | 12 | Output | Conversion result | ADC |
| TMSTBINT | 1 | Input | Internal temp. monitor strobe | ADC |
| SAMPLE | 1 | Output | 1 - Analog input is sampled | ADC |
| VAREFSEL | 1 | Input | 0 = Output internal voltage reference (2.56 V) to VAREF <br> 1 = Input external voltage reference from VAREF and GNDREF | ADC |
| CHNUMBER[4:0] | 5 | Input | Analog input channel select | Input multiplexer |
| ACMCLK | 1 | Input | ACM clock | ACM |
| ACMWEN | 1 | Input | ACM write enable - active high | ACM |
| ACMRESET | 1 | Input | ACM reset - active low | ACM |
| ACMWDATA[7:0] | 8 | Input | ACM write data | ACM |
| ACMRDATA[7:0] | 8 | Output | ACM read data | ACM |
| ACMADDR[7:0] | 8 | Input | ACM address | ACM |
| CMSTB0 to CMSTB9 | 10 | Input | Current monitor strobe - 1 per quad, active high | Analog Quad |
| GDON0 to GDON9 | 10 | Input | Control to power MOS - 1 per quad | Analog Quad |
| TMSTB0 to TMSTB9 | 10 | Input | Temperature monitor strobe - 1 per quad; active high | Analog Quad |
| DAVOUTO, DACOUTO, DATOUTO to DAVOUT9, DACOUT9, DATOUT9 | 30 | Output | Digital outputs - 3 per quad | Analog Quad |
| DENAV0, DENAC0, DENATO to DENAV9, DENAC9, DENAT9 | 30 | Input | Digital input enables - 3 per quad | Analog Quad |
| AV0 | 1 | Input | Analog Quad 0 | Analog Quad |
| AC0 | 1 | Input |  | Analog Quad |
| AG0 | 1 | Output |  | Analog Quad |

Fusion Family of Mixed-Signal Flash FPGAs

## Table 2-34 • Analog Block Pin Description (Continued)

| Signal Name | Number of Bits | Direction | Function | Location of Details |
| :---: | :---: | :---: | :---: | :---: |
| ATO | 1 | Input |  | Analog Quad |
| ATRETURN01 | 1 | Input | Temperature monitor return shared by Analog Quads 0 and 1 | Analog Quad |
| AV1 | 1 | Input | Analog Quad 1 | Analog Quad |
| AC1 | 1 | Input |  | Analog Quad |
| AG1 | 1 | Output |  | Analog Quad |
| AT1 | 1 | Input |  | Analog Quad |
| AV2 | 1 | Input | Analog Quad 2 | Analog Quad |
| AC2 | 1 | Input |  | Analog Quad |
| AG2 | 1 | Output |  | Analog Quad |
| AT2 | 1 | Input |  | Analog Quad |
| ATRETURN23 | 1 | Input | Temperature monitor return shared by Analog Quads 2 and 3 | Analog Quad |
| AV3 | 1 | Input | Analog Quad 3 | Analog Quad |
| AC3 | 1 | Input |  | Analog Quad |
| AG3 | 1 | Output |  | Analog Quad |
| AT3 | 1 | Input |  | Analog Quad |
| AV4 | 1 | Input | Analog Quad 4 | Analog Quad |
| AC4 | 1 | Input |  | Analog Quad |
| AG4 | 1 | Output |  | Analog Quad |
| AT4 | 1 | Input |  | Analog Quad |
| ATRETURN45 | 1 | Input | Temperature monitor return shared by Analog Quads 4 and 5 | Analog Quad |
| AV5 | 1 | Input | Analog Quad 5 | Analog Quad |
| AC5 | 1 | Input |  | Analog Quad |
| AG5 | 1 | Output |  | Analog Quad |
| AT5 | 1 | Input |  | Analog Quad |
| AV6 | 1 | Input | Analog Quad 6 | Analog Quad |
| AC6 | 1 | Input |  | Analog Quad |
| AG6 | 1 | Output |  | Analog Quad |
| AT6 | 1 | Input |  | Analog Quad |
| ATRETURN67 | 1 | Input | Temperature monitor return shared by Analog Quads 6 and 7 | Analog Quad |
| AV7 | 1 | Input | Analog Quad 7 | Analog Quad |
| AC7 | 1 | Input |  | Analog Quad |
| AG7 | 1 | Output |  | Analog Quad |
| AT7 | 1 | Input |  | Analog Quad |
| AV8 | 1 | Input | Analog Quad 8 | Analog Quad |
| AC8 | 1 | Input |  | Analog Quad |
| AG8 | 1 | Output |  | Analog Quad |
| AT8 | 1 | Input |  | Analog Quad |

Fusion Family of Mixed-Signal Flash FPGAs

Fusion Family of Mixed-Signal Flash FPGAs

Table 2-34 • Analog Block Pin Description (Continued)

| Signal Name | Number <br> of Bits | Direction | Function | Location of <br> Details |
| :--- | :---: | :---: | :--- | :---: |
| ATRETURN89 | 1 | Input | Temperature monitor return shared by <br> Analog Quads 8 and 9 | Analog Quad |
| AV9 | 1 | Input | Analog Quad 9 | Analog Quad |
| AC9 | 1 | Input |  | Analog Quad |
| AG9 | 1 | Output |  | Analog Quad |
| AT9 | 1 | Input |  | Analog Quad |
| RTCMATCH | 1 | Output | MATCH | RTC |
| RTCPSMMATCH | 1 | Output | MATCH connected to VRPSM | RTC |
| RTCXTLMODE[1:0] | 2 | Output | Drives XTLOSC RTCMODE[1:0] pins | RTC |
| RTCXTLSEL | 1 | Output | Drives XTLOSC MODESEL pin | RTC |
| RTCCLK | 1 | Input | RTC clock input | RTC |

## Analog Quad

With the Fusion family, Actel introduces the Analog Quad, shown in Figure 2-62 on page 2-70, as the basic analog I/O structure. The Analog Quad is a four-channel system used to precondition a set of analog signals before sending to the ADC for conversion into a digital signal. In order to maximize the usefulness of the Analog Quad, the analog input signals may also be configured as LVTTL digital input signals. The Analog Quad is divided into four sections.
The first section is called the Voltage Monitor Block and its input pin is named AV. It contains a 2-channel analog multiplexer which allows an incoming analog signal to be routed directly to the ADC or allows the signal to be routed to a pre-scaler circuit before being sent to the ADC. The pre-scaler can be configured to accept analog signals between -12 V and 0 , or between 0 and +12 V . The pre-scaler circuit scales the voltage applied to the ADC input pad such that it is compatible with the ADC input voltage range. The AV pin may also be used as a digital input pin.
The second section of the Analog Quad is called the Current Monitor Block. Its input pin is named AC. The Current Monitor Block contains all the same functions as the Voltage Monitor Block with one addition, which is a current monitoring function. A small external current sensing resistor (typically less than $1 \Omega$ ) is connected between the AV and AC pins and is in series with a power source. The Current Monitor Block contains a current monitor circuit that converts the current through the external resistor to a voltage which can then be read using the ADC.

The third part of the Analog Quad is called the Gate Driver Block and its output pin is named AG. This section is used to drive an external FET. There are two modes available: a high current drive mode and a current source control mode. Both negative and positive voltage polarities are available and in the current source control mode, four different current levels are available.
The fourth section of the Analog Quad is called the Temperature Monitor Block and its input pin name is AT. This block is similar to the Voltage Monitor Block except that it has an additional function: it can be used to monitor the temperature of an external diode connected transistor. It has a modified pre-scaler and is limited to positive voltages only.
The Analog Quad can be configured during design time by Actel Libero IDE; however, the Analog Configuration MUX (ACM) can be used to change the parameters of any of these I/Os during runtime. This type of change is referred to as a context switch. The Analog Quad is a modular structure that is replicated to generate the analog I/O resources. Each Fusion device supports between 5 and 10 Analog Quads.
The analog pads are numbered to clearly identify both the type of pad (voltage, current, gate driver, or temperature pad) and its corresponding Analog Quad (AV0, AC0, AG0, AT0, AV1, ..., AC9, AG9, and AT9). There are three types of input pads (AVx, ACx, and ATx) and one type of analog output pad (AGx). Since there can be up to 10 Analog Quads on a device, there can be a maximum of 30 analog input pads and 10 analog out pads.

Off-Chip


Figure 2-62 • Analog Quad

## Voltage Monitor

The Fusion Analog Quad offers a robust set of voltage monitoring capabilities unique in the FPGA industry. The Analog Quad is comprised of three analog input padsAnalog Voltage (AV), Analog Current (AC), and Analog Temperature (AT)—and a single gate driver output pad, Analog Gate (AG). There are many common characteristics among the analog input pads. Each analog input can be configured to connect directly to the
input MUX of the ADC. When configured in this manner (Figure 2-63), there will be no prescaling of the input signal. Care must be taken in this mode not to drive the ADC into saturation by applying an input voltage greater than the reference voltage. The internal reference voltage of the ADC is 2.56 V . Optionally, an external reference can be supplied by the user. The external reference can be a maximum of 3.3 V DC .


Figure 2-63 • Analog Quad Direct Connect

The Analog Quad inputs are tolerant up to $12 \mathrm{~V} \pm 10 \%$. The Analog Quad offers a wide variety of prescaling options to enable the ADC to resolve the input signals. Figure 2-64 shows the path through the Analog Quad for a signal that is to be prescaled prior to conversion. The ADC internal reference voltage and the pre-scaler factors were selected to make both prescaling and postscaling of the signals easy, binary calculations (refer to Table 2-45 on page 2-93 for details). When an analog input pad is configured with a pre-scaler, there will be a $1 \mathrm{M} \Omega$ resistor to ground. This occurs even when the device is in power down mode. On low power standby or sleep mode ( $\mathrm{V}_{\mathrm{CC}}$ is OFF, $\mathrm{V}_{\mathrm{CC} 33 \mathrm{~A}}$ is $\mathrm{ON} ; \mathrm{V}_{\mathrm{CCI}}$ is ON ) or when the resource is not used, Analog inputs are pulled-down to ground through a
$1 \mathrm{M} \Omega$ resistor. The gate driver output is floating (or tristated), and there is no extra current on $\mathrm{V}_{\text {CC33A }}$.
These scaling factors hold true whether the particular pad is configured to accept a positive or negative voltage. Note that while the AV and AC pads support the same prescaling factors, the AT pad supports a reduced set of prescaling factors and support positive voltages only.
Typical scaling factors are given in Table 2-45 on page 2-93, and the gain error (which contributes to the minimum and maximum) is in Table 2-40 on page 2-86.
Each l/O will draw power when connected to power ( 3 mA at 3 V ).


Figure 2-64 • Analog Quad Pre-Scaler Input Configuration

## Direct Digital Input

The AV, AC, and AT pads can also be configured as high voltage digital inputs (Figure 2-65). As these pads are 12 V tolerant, the digital input can also be up to 12 V . However, the frequency at which these pads can operate is limited to 10 MHz .
To enable one of these analog input pads to operate as a digital input, its corresponding Digital Input enable (DENAxy) pin on the Analog Block must be pulled high, where $x$ is either $V, C$, or $T$ (for AV, AC, or AT pads
respectively) and $y$ is 0 to 9 , corresponding to the appropriate Analog Quad.
When the pad is configured as a digital input, this signal will come out of the Analog Block macro on the appropriate DAxOUTy pin, where x represents the pad type (V for AV pad, C for AC pad, or T for AT pad) and y represents the appropriate Analog Quad number. Example: if the AT pad in Analog Quad 5 is configured as a digital input, it will come out on the DATOUT5 pin of the Analog Block macro.


Figure 2-65 • Analog Quad Direct Digital Input Configuration

## Current Monitor

The Fusion Analog Quad is an excellent element for voltage and current monitoring applications. In addition to supporting the functionality offered by the AV pad, the AC pad may be configured to monitor current across an external sense resistor (Figure 2-66). To support this current monitor function, the 10x differential amplifier passes the amplified difference between the AV and AC pads to the ADC. The potential on the AV pad MUST be greater than the AC pad in current monitor mode. The amplifier enables the user to use very small resistor
values, thereby limiting any impact on the circuit. This function of the AC pad does not affect the AV pad operation. The current monitor can resolve differences between the AV and AC pads as low as 1 mV .
The current monitor is activated via the Current Monitor Strobe pin (CMST) on the Analog Block macro. There is a CMST pin for each Analog Quad present on the device (CMST0-CMST9).


Figure 2-66 • Analog Quad Current Monitor Configuration

Figure 2-67 illustrates the current monitor operation with an example of the AC pad operating in current monitor mode. In this example, a 10 V supply is passed across a $0.10 \Omega$ resistor. The difference between the AV and AC pad passes through the 10x amplifier and is then converted by the ADC. In this example, the current drawn from a 10 V supply is measured by the voltage drop it creates across the $0.1 \Omega$ current sampling resistor. This voltage drop is in turn amplified by ten times by the 10x amplifier and then measured by the ADC. Considering the values shown in Figure 2-67, and making use of Ohm's law, it can be seen that the 1 A current creates a voltage drop across the sampling resistor of 0.1 V , which becomes 1 V after amplification. Thus, the ADC measures a current of 1 A as 1 V , and a current of 0.2 A would therefore be read as 0.2 V by the ADC.

Note that because of the $10 x$ amplification of the voltage difference between these pads, the maximum measurable difference between the AV and AC pads is the ADC reference voltage divided by 10. A larger AV-toAC voltage drop will result in ADC saturation, i.e., the digital code output by the ADC will stay stuck at the full scale value for the chosen ADC reference voltage. Therefore, the user must select the external sense resistor appropriately. Another important consideration is that the absolute value of the voltage on the AV pin should be greater than or equal to the absolute value of the voltage on the AC pin for the current monitor to function correctly. If voltage available for reading by the ADC the current monitor output voltage available for reading by the ADC will be zero.


Figure 2-67 • Current Monitor Example

## Fusion Family of Mixed-Signal Flash FPGAs

## Gate Driver

The Fusion Analog Quad includes a Gate Driver, connected to the quad's AG pin (Figure 2-68). Designed to work with external P-Channel or N-Channel MOSFETs, the Gate driver is a configurable current sink or source and requires an external pull-up or a pull-down resistor. The AG supports 4 selectable gate drive levels: $1 \mu \mathrm{~A}, 3$ $\mu \mathrm{A}, 10 \mu \mathrm{~A}$, and $30 \mu \mathrm{~A}$ (Figure 2-69 on page 2-77). The AG also supports a High Current Drive mode in which it can sink 25 mA . Modeled on an open drain style output, it does not output a voltage level without an appropriate
pull-up or pull-down resistor. If 1 V is forced on the drain, the current sinking/sourcing will exceed the ability of the transistor, and the device could be damaged.

The AG pad is turned on via the corresponding GDONx pin in the Analog Block macro, where $x$ is the number of the corresponding Analog Quad for AG pad to be enabled (GDONO to GDON9). The maximum AG pad switching frequency is 1.25 MHz .


## Figure 2-68 • Gate Driver

The gate-to-source voltage (Vgs) of the external MOSFET is limited to the programmable drive current times the external pull-up or pull-down resistor value (EQ 2-1).

$$
\text { Vgs } \leq \lg \times\left(R_{\text {pullup }} \text { or } R_{\text {pulldown }}\right)
$$

The rate at which the gate voltage of the external MOSFET slews is determined by the current Ig sourced or sunk by the AG pin and the gate to source capacitance CGS of the external MOSFET. As an approximation, the slew rate is given by EQ 2-2.

EQ 2-1

$$
\mathrm{dv} / \mathrm{dt}=\lg / \mathrm{CGS}
$$

CGS is not a fixed capacitance but, depending on the circuitry connected to its drain terminal, can vary significantly during the course of a turn-on or turn-off transient. Thus EQ 2-2 on page 2-76 can only be used for a first order estimate of the switching speed of the external MOSFET.


Figure 2-69 • Gate Driver Example

## Temperature Monitor

The final pin in the Analog Quad is the Analog Temperature (AT) pin. The AT pin is used to implement an accurate temperature monitor in conjunction with an external diode connected bipolar transistor (Figure 2-70). For improved temperature measurement accuracy, it is important to use the ATRTN pin for the return path of the current sourced by the AT pin. Each ATRTN pin is
shared between two adjacent Analog Quads. Additionally, if not used for temperature monitoring, the AT pin can provide functionality similar to that of the AV pad. However, in this mode only positive voltages may be applied to the AT pin and only two pre-scaler factors are available ( 16 V and 4 V full scale-refer to Table 2-34 on page 2-67).


Figure 2-70 • Temperature Monitor Quad

The well-known temperature dependence of the current versus voltage characteristics of a PN junction form the basis of the temperature measurement scheme implemented in the Fusion devices. Figure 2-71 shows a simplified schematic of this implementation. The diode connected bipolar transistor is used as the temperature sensor. The 12.5 x amplifier is a switched-capacitor based design and as such can make pseudo-differential measurements i.e., it multiplies by 12.5 the difference between the voltages that appears across the diode connected bipolar transistor with the $90 \mu \mathrm{~A}$ current source switched in (diode current $=100 \mu \mathrm{~A}$ ) and when it is switched out (diode current $=10 \mu \mathrm{~A}$ ). The voltage applied to the ADC is then given in EQ 2-3.

$$
V_{A D C}=12.5[(\mathrm{nkT} / \mathrm{q}) \text { in }(100 \mu \mathrm{~A} / 10 \mu \mathrm{~A})]=250 \times 10^{-3} \times \mathrm{T}
$$

where
$\mathrm{n}=$ Ideality factor of the diode connected transistor. It is typically 1.008 for the Actel recommended transistor type 2N3904. It does vary from transistor to transistor even of the same type and so for very accurate results calibration is needed.
$\mathrm{k}=1.3806 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ is the Boltzman constant $\mathrm{q}=1.602 \times 10^{-19} \mathrm{C}$ is the charge of a proton and as such the ADC reads the temperature $T$ in degrees Kelvin

The temperature monitor block is accurate to $5^{\circ} \mathrm{C}$. This accuracy is limited by the ideality of the external diode connected bipolar transistor. From the above equation it can be seen that voltage output by the temperature monitor block is about 2.50 mV per degree Kelvin. Thus, it is essential to observe good design practices to reduce noise coupled to the on-board and off-board wiring associated with the diode connected bipolar transistor.
A temperature reading is initiated via the Temperature Monitor Strobe (TMSTB) pin associated with a particular Analog Quad. There are up to 10 TMSTB pins in the device (TMSTB0 - TMSTB9).


Figure 2-71 • Temperature Monitor Circuit

## Analog to Digital Converter Block

At the heart of the Fusion analog system is a programmable Successive Approximation Register (SAR) analog to digital converter (ADC). The ADC can support 8-, 10-, or 12-bit modes of operation. In 12-bit mode, the ADC can resolve 500 ksps. All results are MSB justified in the ADC. The input to the ADC is a large 32:1 analog input multiplexer. A simplified block diagram of the Analog Quads, analog input multiplexer, and ADC is shown in Figure 2-72. The ADC offers multiple self-calibrating modes to ensure consistent high performance at both power-up and during runtime.


[^3]
## ADC Input Multiplexer

At the input to the Fusion ADC is a $32: 1$ multiplexer. Of the 32 input channels, up to 30 are user definable. Two of these channels are hardwired internally. Channel 31 connects to an internal temperature diode, so that the temperature of the Fusion device itself can be monitored. Channel 0 is wired to the FPGA's $1.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ supply, enabling the Fusion device to monitor its own power supply. Doing this internally makes it unnecessary to use an analog I/O to support these functions. The balance of MUX inputs are connected to Analog Quads (see the "Analog Quad" section on page 2-69). Table 2-35 defines which Analog Quad inputs are associated with which specific analog MUX channel. The number of Analog Quads present is device-dependent; refer to the family list in Table 1 on
page i of this datasheet for the number of quads per device. Regardless of the number of quads populated in a device, the internal connections to both $\mathrm{V}_{\mathrm{CC}}$ and internal temperature diode remain on Channels 0 and 31 respectively. In order to sample the internal temperature monitor, it must be strobed (similar to the AT pads). The TMSTBINT pin on the Analog Block macro is the control for strobing the internal temperature measurement diode.
To determine which channel is selected for conversion, there is a 5-pin interface on the Analog Block, CHNUMBER[4:0], defined in Table 2-36 on page 2-82. Table 2-35 shows the correlation between the analog MUX input channels and the analog input pins.

## Table 2-35 • Analog MUX Channels

| Analog MUX Channel | Signal | Analog Quad Number |
| :---: | :---: | :---: |
| 0 | Vcc_analog |  |
| 1 | AV0 | Analog Quad 0 |
| 2 | AC0 |  |
| 3 | ATO |  |
| 4 | AV1 | Analog Quad 1 |
| 5 | AC1 |  |
| 6 | AT1 |  |
| 7 | AV2 | Analog Quad 2 |
| 8 | AC2 |  |
| 9 | AT2 |  |
| 10 | AV3 | Analog Quad 3 |
| 11 | AC3 |  |
| 12 | AT3 |  |
| 13 | AV4 | Analog Quad 4 |
| 14 | AC4 |  |
| 15 | AT4 |  |
| 16 | AV5 | Analog Quad 5 |
| 17 | AC5 |  |
| 18 | AT5 |  |
| 19 | AV6 | Analog Quad 6 |
| 20 | AC6 |  |
| 21 | AT6 |  |
| 22 | AV7 | Analog Quad 7 |
| 23 | AC7 |  |
| 24 | AT7 |  |
| 25 | AV8 | Analog Quad 8 |
| 26 | AC8 |  |

## Fusion Family of Mixed-Signal Flash FPGAs

Table 2-35 • Analog MUX Channels (Continued)

| Analog MUX Channel | Signal | Analog Quad Number |
| :--- | :---: | :---: |
| 27 | AT8 |  |
| 28 | AV9 | Analog Quad 9 |
| 29 | AC9 |  |
| 30 | AT9 |  |
| 31 | Internal temperature monitor |  |

Table 2-36 • Channel Selection

| Channel Number | CHNUMBER[4:0] |
| :--- | :---: |
| 0 | 00000 |
| 1 | 00001 |
| 2 | 00010 |
| 3 | 00011 |
| . | . |
| . | . |
| . | . |
| 30 | 11110 |
| 31 | 11111 |

$\qquad$

## ADC Description

The Actel Fusion ADC is a 12 -bit SAR ADC. It offers a wide variety of configurations to support many customer use models. It can be programmed to operate in 8 -, $10-$, or 12 -bit modes. This is controlled by MODE[3:0], as defined in Table 2-37.
The conversion time can vary greatly depending on the SYSCLK frequency, ADCCLK frequency (determined by TVC), the STC settings, and the conversion bit-resolution (MODE). See EQ 2-4 through EQ 2-6.

$$
\begin{gather*}
\text { t_conv }=\text { t_sync_read + t_sample + t_distrib + t_post_cal + t_sync_write } \\
\text { t_conv }=\text { SYSCLK period }+((2+\text { STC }) \text { * ADCCLK period })+ \\
(8,10 \text { or } 12 \text { * ADCCLK period })+(2 \text { * ADCCLK period })+\text { SYSCLK period }
\end{gather*}
$$

$$
\text { ADCCLK }=\text { SYSCLK/4 * }(1+\mathrm{TVC})
$$

where:
t_sync_read = Time for latching the input data
t_sample $=$ Time for sampling the analog signal
t_distrib = Time for charge distribution
t_post_cal = Time for post-calibration
t_sync_write $=$ Time for latching the output data
Table 2-37 • MODE[3:0] Truth Table

| ADC Mode | Mode[3] | Mode[2] | Mode[1] | Mode[0] |
| :---: | :---: | :---: | :---: | :---: |
| 10-bit | 0 | 0 | 0 | 0 |
| 12-bit | 0 | 0 | 0 | 1 |
| 8-bit | 0 | 0 | 1 | 0 |
| Reserved | 0 | 0 | 1 | 1 |
| 10-bit without internal power-down after conversion | 0 | 1 | 0 | 0 |
| 12-bit without internal power-down after conversion | 0 | 1 | 0 | 1 |
| 8-bit without internal power-down after conversion | 0 | 1 | 1 | 0 |
| Reserved | 0 | 1 | 1 | 1 |
| 10-bit without internal calibration | 1 | 0 | 0 | 0 |
| 12-bit without internal calibration | 1 | 0 | 0 | 1 |
| 8-bit without internal calibration | 1 | 0 | 1 | 0 |
| Reserved | 1 | 0 | 1 | 1 |
| 10-bit without internal calibration and without internal power-down after conversion | 1 | 1 | 0 | 0 |
| 12-bit without internal calibration and without internal power-down after conversion | 1 | 1 | 0 | 1 |
| 8-bit without internal calibration and without internal power-down after conversion | 1 | 1 | 1 | 0 |
| Reserved | 1 | 1 | 1 | 1 |

## Fusion Family of Mixed-Signal Flash FPGAs

In addition to the resolution, the ADC offers many different timing configurations. The clock for the ADC is brought into the ADC via the SYSCLK pin on the Analog Block. This base clock can be divided down to suit ADC performance requirements. The clock divider for the ADC clock is TVC[7:0], defined in Table 2-38.

Table 2-38 • ADC Clock Divider

| TVC[7:0] | ADC Clock = SYSCLK/(4 $\times($ TVC + 1)) |  |
| :--- | :---: | :---: |
| 0 | 00000000 | SYSCLK/4 |
| 1 | 00000001 | SYSCLK/8 |
| . |  | $\cdot$ |
| . | 01111110 | . |
| . | 01111111 | . |
| 126 | 10000000 | SYSCLK/508 |
| 127 |  | SYSCLK/5012 |
| 128 |  | SYSCLK/516 |
| $\cdot$ | 11111111 |  |
| $\cdot$ |  | SYSCLK/1024 |
| 255 |  |  |

The amount of time allocated for a single sample is also programmable. The clock period defined by 1/ADC clock is the basic unit of measurement for the Sample Time Control (STC). The Sample Time Control table details how the STC can be configured via the STC[7:0] pins on the Analog Block, defined in Table 2-39.

Table 2-39 • Sample Time Control (STC)

|  | STC[7:0] | Sample Time = (STC + 2) $\times$ ADC_CLK Period |
| :--- | :---: | :---: |
| 0 | 00000000 | 2 ADC clock periods |
| 1 | 00000001 | 3 ADC clock periods |
| . |  |  |
| . | 11111110 | 256 ADC clock periods |
| 254 | 11111111 | 257 ADC clock periods |
| 255 |  |  |

The Fusion device has an integrated on-chip 2.56 V reference for the ADC. The value of this reference voltage was chosen to make the pre-scaling and postscaling factors for the pre-scaler blocks change in a binary fashion. However, if desired an external reference voltage of up to 3.3 V can be connected between the VAREF and GNDREF pins. The VAREFSEL control pin is used to select the reference voltage.

- $0=$ Output internal voltage reference $(2.56 \mathrm{~V})$ to VAREF
- 1 = Input external voltage reference from VAREF and GNDREF
The ADC can be powered down independently of the FPGA core as an additional control or for power saving considerations, via the PWRDWN pin of the Analog Block.
Once the ADC has powered up and been released from reset, ADCRESET, the ADC will initiate a calibration routine designed to provide optimal ADC performance.
The Fusion ADC offers a robust calibration scheme to reduce integrated offset and linearity errors. The offset and linearity errors of the main capacitor array are compensated with an 8-bit calibration capacitor array.

The offset/linearity error calibration is carried out in two ways. First, a power-up calibration is carried out when the ADC comes out of reset. This is initiated by the CALIBRATE output of the Analog Block macro and is a fixed number of ADC_CLK cycles ( 3,840 cycles). In this mode, the linearity and offset errors of the capacitors are calibrated. Secondly, to compensate for drift and temperature-dependent effects, every conversion is followed by calibration of either the offset or a bit of the main capacitor array. The calibration procedure takes two additional ADC clock cycles. This ensures that over time and with temperature, the ADC remains consistent.
After both calibration and setting the appropriate configurations as explained above, the ADC is ready for operation. Driving the ADCSTART signal will start a sampling and conversion of a given channel number, which is set using CHNUMBER[4:0]. Status signals SAMPLE and BUSY will show when the ADC is sampling and converting (see Table 2-36 on page 2-82). When the conversion is completed, the DATAVALID pin will go high (BUSY will go low), indicating that the digital result is available on the RESULT[11:0] pins.

Fusion Family of Mixed-Signal Flash FPGAs

## Analog System Characteristics

Table 2-40 • Electrical Specifications

| Parameter | Description | Condition | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All Analog Inputs (Direct Input) |  |  |  |  |  |  |
| VINAD | Input Voltage |  | -0.2 |  | $\leq \mathrm{V}_{\text {REF }}$ | V |
| CINAD | Input Capacitance | Channel not selected |  | 7 |  | pF |
|  |  | Channel selected but not sampling |  | 8 |  | pF |
|  |  | Channel selected and sampling |  | 18 |  | pF |
| ZINAD | Input Impedance | 8-bit mode |  | 4 |  | k $\Omega$ |
|  |  | 10-bit mode |  | 4 |  | k $\Omega$ |
|  |  | 12-bit mode |  | 4 |  | $\mathrm{k} \Omega$ |
| All Analog Inputs (Using Pre-Scaler) |  |  |  |  |  |  |
| VINAP | Input Voltage ${ }^{1}$ |  | -12 |  | 12 | V |
|  | Accuracy | Positive DC Inputs |  | 1 |  | \% |
|  |  | Negative DC Inputs |  | 2 |  | \% |
|  | Offset |  |  | $\begin{gathered} 2 \pm 0.2 \% \\ \text { of range } \end{gathered}$ |  | mV |
|  | Bandwidth |  |  |  | 100 | kHz |
| ZINAP | Impedance (2, 4, 8, and 12-V ranges) |  | 1 |  |  | $\mathrm{M} \Omega$ |
|  | Scaling Factor | Pre-Scaler Modes (Table 2-45 on page 2-93) |  |  |  |  |
|  | Settling Time | To 0.1\% of final value |  |  | 10 | $\mu \mathrm{S}$ |

Current Monitor (Potential on the AV Pad Must be Greater Than the AC Pad)

| VRSM ${ }^{2}$ | Maximum Differential Input |  |  |  | $\mathrm{V}_{\text {REFADC }} / 10$ | mV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Resolution |  | 1 |  |  | mV |
|  | Common Mode Range |  | -12 |  | 12 | V |
|  | Gain |  |  | 10 |  |  |
| CMRR | Common mode rejection ratio | DC-1 kHz |  | 60 |  | dB |
|  |  | $1 \mathrm{kHz}-10 \mathrm{kHz}$ |  | 50 |  | dB |
|  |  | > 10 kHz |  | 30 |  | dB |
|  | Pole |  |  | 100 |  | kHz |
| TMPWC | Strobe | Minimum Pulse Width (High and Low) | 10 |  |  | $\mu \mathrm{s}$ |
| VOFFC | Offset Inaccuracy |  | $\begin{gathered} -2-(0.05 \\ *(\mathrm{AV}- \\ \mathrm{AC})) \end{gathered}$ |  | $\begin{gathered} 2+(0.05 \text { * } \\ (\mathrm{AV}-\mathrm{AC})) \end{gathered}$ | mv |

## Notes:

1. The input voltage range for the Temperature Monitor Block Pre-Scaler is 0 to 14 V .
2. VRSM is the maximum voltage drop across the current sense resistor.
3. Analog inputs used as digital inputs can tolerate up to 14 V (same as analog inputs). There is no reliability concern on digital inputs as long as VIND does not exceed this maximum input voltage.
4. VIND is limited to AVDD+0.2 to allow reaching 10 Mhz input frequency.

Table 2-40 • Electrical Specifications

| Parameter | Description | Condition | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temperature Monitor (Can be Used for Monitoring Positive Voltage Only) |  |  |  |  |  |  |
|  | Resolution |  |  | 1 |  | ${ }^{\circ} \mathrm{C}$ |
|  | Accuracy |  |  | 3 |  | ${ }^{\circ} \mathrm{C}$ |
| TMPWT | Strobe | Minimum Pulse Width (High and Low) | 10 |  |  | $\mu \mathrm{s}$ |
| Analog Input as a Digital Input |  |  |  |  |  |  |
| VIND ${ }^{3,4}$ | Input Voltage |  | -0.2 |  | AVDD + 0.2 | V |
| VHYSDIN | Hysteresis |  |  | 0.3 |  | V |
| VIHDIN | Input High |  |  | 1.2 |  | V |
| VILDIN | Input Low |  |  | 0.9 |  | V |
| VMPWDIN | Minimum Pulse Width |  | 50 |  |  | ns |
| VFDIN | Maximum Frequency |  |  |  | 10 | MHz |
| ISTBDIN | Sleep Current |  |  |  | 20 | nA |
| IDYNDIN | Dynamic Current |  |  |  | 20 | $\mu \mathrm{A}$ |
| tINDIN | Input Delay |  |  | 10 |  | ns |
| Analog Output Pad (G Pad) |  |  |  |  |  |  |
| VG | Voltage Range |  | -12 |  | 12 | V |
| IG | Minimum <br> Drive Output Current | High Current Mode at 1.0 V |  | 25 |  | mA |
|  |  | Low Current Mode—1 $\mu \mathrm{A}$ |  | 1 |  | $\mu \mathrm{A}$ |
|  |  | Low Current Mode-3 $\mu \mathrm{A}$ |  | 3 |  | $\mu \mathrm{A}$ |
|  |  | Low Current Mode-10 $\mu \mathrm{A}$ |  | 10 |  | $\mu \mathrm{A}$ |
|  |  | Low Current Mode-30 $\mu \mathrm{A}$ |  | 30 |  | $\mu \mathrm{A}$ |
| IOFFG | Maximum Off Current |  |  | 100 |  | nA |

## Notes:

1. The input voltage range for the Temperature Monitor Block Pre-Scaler is 0 to 14 V .
2. VRSM is the maximum voltage drop across the current sense resistor.
3. Analog inputs used as digital inputs can tolerate up to 14 V (same as analog inputs). There is no reliability concern on digital inputs as long as VIND does not exceed this maximum input voltage.
4. VIND is limited to AVDD+0.2 to allow reaching 10 Mhz input frequency.

Fusion Family of Mixed-Signal Flash FPGAs

Table 2-41 • ADC Characteristics in Direct Input Mode

| Parameter | Description | Condition | Min. | Typ. | Max. | Units |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| VREFADC | Reference Voltage | Internal Reference |  | 2.56 |  | V |
|  |  | External Reference | 2.527 |  | $V_{C C 33 A}$ <br> +0.05 | V |

## DC Accuracy

| TUE | Total Unadjusted Error (external reference) | 8-bit mode | 0.1186 | LSB |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 10-bit mode | 0.8112 | LSB |
|  |  | 12-bit mode | 2.4112 | LSB |
| INL | Integral Non-linearity (external reference) | 8-bit mode | 0.2 | LSB |
|  |  | 10-bit mode | 0.35 | LSB |
|  |  | 12-bit mode | 1.75 | LSB |
| DNL | Differential Non-linearity (external reference) | 8-bit mode | 0.2 | LSB |
|  | (No Missing Codes) | 10-bit mode | 0.6 | LSB |
|  |  | 12-bit mode | 2.5 | LSB |
|  | Offset Error (external reference) | 8-bit mode | 0.01 | LSB |
|  |  | 10-bit mode | 0.156 | LSB |
|  |  | 12-bit mode | 0.125 | LSB |
|  | Gain Error (external reference) | 8-bit mode | 0.5 | LSB |
|  |  | 10-bit mode | 2.26 | LSB |
|  |  | 12-bit mode | 3.6 | LSB |

## Conversion Rate

|  | Conversion Time | 8-bit mode | 1.67 |  |  | $\mu \mathrm{~s}$ |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
|  |  | 10 -bit mode | 1.82 |  |  | $\mu \mathrm{~s}$ |
|  |  | 12 -bit mode | 2 |  |  | $\mu \mathrm{~s}$ |
|  | ${\text { Sample } \text { Rate }^{1}}$ | 8-bit mode |  |  | 600 | ksps |
|  |  | 10 -bit mode |  |  | 550 | ksps |
|  |  | 12-bit mode |  |  | 500 | ksps |

## Notes:

1. The Sample Rate is time-shared among active analog inputs.
2. Internal voltage reference can handle a load up to $100 \mu A$.

## Analog Configuration MUX

The Analog Configuration MUX (ACM) is the interface between the FPGA, the Analog Block configurations, and the real-time counter. The Actel Libero IDE Tool will generate IPs that will load and configure the Analog Block via the ACM. However, users are not limited to only using the Libero IDE IP. This section provides a detailed description of the ACM's register map, truth tables for proper configuration of the Analog Block and RTC, as well as timing waveforms so users can access and control the ACM directly from their designs.
The Analog Block contains four 8-bit latches per Analog Quad that are initialized through the ACM. These latches

Table 2-42 • ACM Address Decode Table for Analog Quad
act as configuration bits for Analog Quads. The ACM block runs from the core voltage supply ( 1.5 V ).
Access to the ACM is achieved via 8-bit address and data buses with enables. The pin list is provided in Table 2-34 on page 2-67. The ACM clock speed is limited to a maximum of 10 MHz operation, more than sufficient to handle the low bandwidth requirements of configuring the Analog Block and the RTC (sub-block of the Analog Block).
Table 2-42 decodes the ACM address space and maps it to the corresponding Analog Quad and configuration byte for that quad.

| ACMADDR [7:0] in Decimal | Name | Description | Associated Peripheral |
| :---: | :---: | :---: | :---: |
| 0 | - | - | Analog Quad |
| 1 | AQ0 | Byte 0 | Analog Quad |
| 2 | AQ0 | Byte 1 | Analog Quad |
| 3 | AQ0 | Byte 2 | Analog Quad |
| 4 | AQ0 | Byte 3 | Analog Quad |
| 5 | AQ1 | Byte 0 | Analog Quad |
|  |  |  | Analog Quad |
| 36 | AQ8 | Byte 3 | Analog Quad |
| 37 | AQ9 | Byte 0 | Analog Quad |
| 38 | AQ9 | Byte 1 | Analog Quad |
| 39 | AQ9 | Byte 2 | Analog Quad |
| 40 | AQ9 | Byte3 | Analog Quad |
| 41 |  | Undefined | Analog Quad |
|  |  | Undefined | Analog Quad |
|  |  | Undefined | Analog Quad |
|  |  | Undefined | Analog Quad |
| 63 |  | Undefined | RTC |
| 64 | COUNTERO | Counter bits 7:0 | RTC |
| 65 | COUNTER1 | Counter bits 15:8 | RTC |
| 66 | COUNTER2 | Counter bits 23:16 | RTC |
| 67 | COUNTER3 | Counter bits 31:24 | RTC |
| 68 | COUNTER4 | Counter bits 39:32 | RTC |
| 72 | MATCHREGO | Match register bits 7:0 | RTC |

## Fusion Family of Mixed-Signal Flash FPGAs

Table 2-42 • ACM Address Decode Table for Analog Quad (Continued)

| ACMADDR [7:0] in <br> Decimal | Name | Description | Associated Peripheral |
| :--- | :--- | :--- | :---: |
| 73 | MATCHREG1 | Match register bits $15: 8$ | RTC |
| 74 | MATCHREG2 | Match register bits $23: 16$ | RTC |
| 75 | MATCHREG3 | Match register bits $31: 24$ | RTC |
| 76 | MATCHREG4 | Match register bits $39: 32$ | RTC |
| 80 | MATCHBITS0 | Individual match bits 7:0 | RTC |
| 81 | MATCHBITS1 | Individual match bits $15: 8$ | RTC |
| 82 | MATCHBITS2 | Individual match bits $23: 16$ | RTC |
| 83 | MATCHBITS3 | Individual match bits $31: 24$ | RTC |
| 84 | MATCHBITS4 | Individual match bits $39: 32$ | RTC |
| 88 | CTRL_STAT | Control (write) $/$ status (read) <br> register bits 7:0 | RTC |
| 89 | TEST_REG | Test register(s) | RTC |

Note: ACMADDR bytes 1 to 40 pertain to the Analog Quads, while bytes 64 to 89 pertain to the RTC.
$\qquad$

## ACM Characteristics ${ }^{1}$



Figure 2-73 • ACM Write Waveform


Figure 2-74 • ACM Read Waveform

## Timing Characteristics

Table 2-43 • Analog Configuration Multiplexer (ACM) Timing
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, Typical Case, $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}$

| Parameter | Description | Min. | Typ. | Max. |
| :--- | :--- | :---: | :---: | :---: |
| $t_{\text {CLKQACM }}$ | Clock-to-Q of the ACM | 10 |  | Units |
| $t_{\text {SUDACM }}$ | Data Setup time for the ACM | 10 |  | ns |
| $\mathrm{t}_{\text {HDACM }}$ | Data Hold time for the ACM | 0 |  | ns |
| $\mathrm{t}_{\text {SUAACM }}$ | Address Setup time for the ACM | 10 |  | ns |
| $\mathrm{t}_{\text {HAACM }}$ | Address Hold time for the ACM | 0 |  | ns |
| $\mathrm{t}_{\text {SUEACM }}$ | Enable Setup time for the ACM | 10 |  | ns |
| $\mathrm{t}_{\text {HEACM }}$ | Enable Hold time for the ACM | 0 |  | ns |
| $\mathrm{t}_{\text {MPWARACM }}$ | Asynchronous Reset Minimum Pulse Width for the ACM | 10 |  | ns |
| $\mathrm{t}_{\text {REMARACM }}$ | Asynchronous Reset Removal time for the ACM | 10 |  | ns |
| $\mathrm{t}_{\text {RECARACM }}$ | Asynchronous Reset Recovery time for the ACM | 10 |  | ns |
| $\mathrm{t}_{\text {MPWCLKACM }}$ | Clock Minimum Pulse Width for the ACM | 50 |  | ns |

1. When addressing the RTC addresses (i.e., _ACMADDR 64 to 89), there is no timing generator, and the rc_osc, byte_en, and aq_wen signals have no impact.

## Analog Quad ACM Description

Table 2-44 maps out the Analog Configuration MUX (ACM) space associated with configuration of the Analog Quads within the Analog Block. Table 2-44 shows the byte assignment within each quad and function of each bit within each byte. Subsequent tables will explain each bit setting and how that corresponds to a particular configuration. After 3.3 V and 1.5 V is applied to Fusion, analog quad configuration registers are loaded with default setting until initialization and configuration state machine changes it to user defined setting.

Table 2-44 • Analog Quad ACM Byte Assignment

| Byte | Bit | Signal (Bx) | Function | Default Setting |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l} \hline \text { Byte } 0 \\ \text { (AV) } \end{array}$ | 0 | B0[0] | Scaling factor control - pre-scaler | Highest voltage Range |
|  | 1 | B0[1] |  |  |
|  | 2 | B0[2] |  |  |
|  | 3 | B0[3] | Analog MUX select | Pre-Scaler |
|  | 4 | B0[4] | Current monitor switch | Off |
|  | 5 | B0[5] | Direct analog input switch | Off |
|  | 6 | B0[6] | Selects V-pad polarity | Positive |
|  | 7 | B0[7] | pre-scaler op-amp mode | Power-down |
| Byte 1 | 0 | B1[0] | Scaling factor control - pre-scaler | Highest voltage range |
| (AC) | 1 | B1[1] |  |  |
|  | 2 | B1[2] |  |  |
|  | 3 | B1[3] | Analog MUX select | Pre-Scaler |
|  | 4 | B1[4] |  |  |
|  | 5 | B1[5] | Direct analog input switch | Off |
|  | 6 | B1[6] | Selects C-pad polarity | Positive |
|  | 7 | B1[7] | Pre-scaler op-amp mode | Power-down |
| Byte 2 | 0 | B2[0] | Chip temperature monitor | Off |
| (AG) | 1 | B2[1] | Spare | - |
|  | 2 | B2[2] | Current drive control | Lowest current |
|  | 3 | B2[3] |  |  |
|  | 4 | B2[4] | Spare | - |
|  | 5 | B2[5] | Spare | - |
|  | 6 | B2[6] | Selects G-pad polarity | Positive |
|  | 7 | B2[7] | Selects low/high drive | Low drive |
| Byte 3 | 0 | B3[0] | Scaling factor control - pre-scaler | Highest voltage range |
| (AT) | 1 | B3[1] |  |  |
|  | 2 | B3[2] |  |  |
|  | 3 | B3[3] | Analog MUX select | Pre-Scaler |
|  | 4 | B3[4] |  |  |
|  | 5 | B3[5] | Direct analog input switch | Off |
|  | 6 | B3[6] | - | - |
|  | 7 | B3[7] | Pre-scaler op-amp mode | Power-down |

Table 2-45 details the settings available to control the pre-scaler values of the AV, AC, and AT pins. Note that the AT pin has a reduced number of available pre-scaler values.

Table 2-45 • Pre-Scaler Control Truth Table (AV ( $\mathbf{x}=\mathbf{0}$ ), AC $(\mathbf{x}=\mathbf{1})$, and AT $(\mathbf{x}=\mathbf{3})$ )

| Control Lines <br> Bx[2:0] | Scaling <br> Factor Pad to <br> ADC Input | LSB for an 8-Bit <br> Conversion <br> $\mathbf{( m V )}$ | LSB for a 10-Bit <br> Conversion <br> $\mathbf{( m V )}$ | LSB for a 12-Bit <br> Conversion <br> $\mathbf{( m V )}$ | Full Scale <br> Voltage | Range Name |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $000^{*}$ | 0.15625 | 64 | 16 | 4 | 16.368 V | 16 V |
| 001 | 0.3125 | 32 | 8 | 2 | 8.184 V | 8 V |
| $010^{*}$ | 0.625 | 16 | 4 | 1 | 4.092 V | 4 V |
| 011 | 1.25 | 8 | 2 | 0.5 | 2.046 V | 2 V |
| 100 | 2.5 | 4 | 1 | 0.25 | 1.023 V | 1 V |
| 101 | 5.0 | 2 | 0.5 | 0.125 | 0.5115 V | 0.5 V |
| 110 | 10.0 | 1 | 0.25 | 0.0625 | 0.25575 V | 0.25 V |
| 111 | 20.0 | 0.5 | 0.125 | 0.03125 | 0.127875 V | 0.125 V |

Note: *These are the only valid ranges for the Temperature Monitor Block Pre-Scaler.

Table 2-46 details the settings available to control the MUX within each of the AV, AC, and AT circuits. This MUX determines whether the signal routed to the ADC is the direct analog input, prescaled signal, or output of either current monitor or temperature monitor blocks.

Table 2-46 • Analog Multiplexer Truth Table (AV (x=0), $A C(x=1)$, and AT $(x=3))$

| Control Lines <br> Bx[4]* | Control Lines <br> Bx[3] | ADC Connected To |
| :---: | :---: | :--- |
| 0 | 0 | Pre-scaler |
| 0 | 1 | Direct input |
| 1 | 0 | Current amplifier/ <br> Temperature Monitor |
| 1 | 1 | Not valid |

Note: *This pin is not available for the Voltage Monitor Block.
Table 2-47 details the settings available to control the Direct Analog Input switch for the AV, AC, and ACT pins.

Table 2-47 • Direct Analog Input Switch Control Truth Table (AV $(x=0), A C(x=1)$, and AT $(x=3))$

| Control Lines <br> Bx[5] | Direct Input Switch |
| :---: | :---: |
| 0 | Off |
| 1 | On |

Table 2-48 details the settings available to control the polarity of the signals coming to the AV, AC, and AT pins. Note that the only valid setting for the AT pin is logic 0 to support positive voltages.
Table 2-48 • Voltage Polarity Control Truth Table (AV ( $\mathbf{x}=$ $0)$, AC ( $x=1$ ), and AT ( $x=3)^{*}$ )

| Control Lines <br> $\mathbf{B x}[6]$ | Input Signal Polarity |
| :---: | :---: |
| 0 | Positive |
| 1 | Negative |

Note: *The B3[6] signal for the AT pad should be kept at a logic level 0 to accept only positive voltages.

Table 2-49 details the settings available to either power down or enable the pre-scaler associated with the analog inputs $A V, A C$, and $A T$.

Table 2-49 • Pre-Scaler Op-Amp Power-Down Truth Table (AV $(x=0), A C(x=1)$, and AT $(x=3))$

| Control Lines <br> $\mathbf{B x}$ [7] | Pre-Scaler Op-Amp |
| :---: | :---: |
| 0 | Power-down |
| 1 | Operational |

Table 2-50 details the settings available to enable the current monitor block associated with the AC pin.

Table 2-50 • Current Monitor Input Switch Control Truth Table (AV (x = 0))

| Control Lines <br> B0[4] | Current Monitor Input Switch |
| :---: | :---: |
| 0 | Off |
| 1 | On |

Table 2-51 details the settings available to configure the drive strength of the gate drive when not in high drive mode.

Table 2-51 • Low Drive Gate Driver Current Truth Table (AG)

| Control Lines <br> B2[3] | Control Lines <br> B2[2] | Current ( $\boldsymbol{\mu A}$ ) |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 0 | 1 | 3 |
| 1 | 0 | 10 |
| 1 | 1 | 30 |

Table 2-52 details the settings available to set the polarity of the gate driver (either P-channel or N -Channel type devices).

Table 2-52 • Gate Driver Polarity Truth Table (AG)

| Control Lines <br> B2[6] | Gate Driver Polarity |
| :---: | :---: |
| 0 | Positive |
| 1 | Negative |

Table 2-53 details the settings available to turn on the Gate Driver and set whether the high drive mode is on or off.

Table 2-53 • Gate Driver Control Truth Table (AG)

| Control Lines <br> B2[7] | GDON | Gate Driver |
| :---: | :---: | :---: |
| 0 | 0 | Off |
| 0 | 1 | Low drive on |
| 1 | 0 | Off |
| 1 | 1 | High drive on |

## User I/Os

## Introduction

Fusion devices feature a flexible I/O structure, supporting a range of mixed voltages ( $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.3 V ) through a bank-selectable voltage. Table 2-55, Table 2-56, Table 2-57, and Table 2-58 on page 2-98 show the voltages and the compatible I/O standards. I/Os provide programmable slew rates, drive strengths, weak pull-up, and weak pull-down circuits. 3.3 V PCl and $3.3 \mathrm{~V} \mathrm{PCI-X} \mathrm{are}$ 5 V tolerant. See the " 5 V Input Tolerance" section on page 2-107 for possible implementations of 5 V tolerance.
All I/Os are in a known state during power-up and any power-up sequence is allowed without current impact. Refer to the "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)" section on page 3-4 for more information. On low power standby or sleep mode ( $\mathrm{V}_{\mathrm{CC}}$ is OFF, $\mathrm{V}_{\mathrm{CC} 33 \mathrm{~A}}$ is $\mathrm{ON} ; \mathrm{V}_{\mathrm{CCI}}$ is ON ) or when the resource is not used, digital inputs are tristated; digital outputs are tristated; digital bibufs (input/output) are tristated.

## I/O Tile

The Fusion I/O tile provides a flexible, programmable structure for implementing a large number of l/O standards. In addition, the registers available in the I/O tile in selected I/O banks can be used to support highperformance register inputs and outputs, with register enable if desired (Figure 2-75 on page 2-96). The registers can also be used to support the JESD-79C Double Data Rate (DDR) standard within the I/O structure (see the "Double Data Rate (DDR) Support" section on page 2-102 for more information).
As depicted in Figure 2-76 on page 2-101, all I/O registers share one CLR port. The output register and output enable register share one CLK port. Refer to the "I/O Registers" section on page 2-101 for more information.

## I/O Banks and I/O Standards Compatibility

The digital I/Os are grouped into I/O voltage banks. There are three digital I/O banks on the AFS090 and AFS250 devices and four digital I/O banks on the AFS600 and AFS1500 devices. Figure 2-89 on page 2-120 and Figure 290 on page 2-121 show the bank configuration by device. The north side of I/O in the AFS600 and AFS1500 devices is comprised of two banks of Actel Pro I/Os. The Actel Pro I/Os support a wide number of voltage referenced I/O standards in addition to the multitude of single-ended and differential I/O standards common throughout all of the Actel digital I/Os. Each I/O voltage bank has dedicated input/output supply and ground voltages (VMV/GNDQ for input buffers and $\mathrm{V}_{\mathrm{CCI}} / \mathrm{GND}$ for output buffers). Because of these dedicated supplies, only I/Os with compatible standards can be assigned to the same I/O voltage bank. Table 2-56 and Table 2-57 on page 2-97 show the required voltage compatibility values for each of these voltages.
For more information about I/O and global assignments to I/O banks, refer to the specific pin table of the device in the "Package Pin Assignments" section on page 4-1 and the "User I/O Naming Convention" section on page 2-120.
Each Pro I/O bank is divided into minibanks. Any user I/O in a $\mathrm{V}_{\text {REF }}$ minibank (a minibank is the region of scope of a $\mathrm{V}_{\text {REF }}$ pin) can be configured as a $\mathrm{V}_{\text {REF }}$ pin (Figure 2-75 on page 2-96). Only one $V_{\text {REF }}$ pin is needed to control the entire $\mathrm{V}_{\text {REF }}$ minibank. The location and scope of the $\mathrm{V}_{\text {REF }}$ minibanks can be determined by the I/O name. For details, see the "User I/O Naming Convention" section on page 2-120.
Table 2-57 on page 2-97 shows the I/O standards supported by the Fusion devices and the corresponding voltage levels.
I/O standards are compatible if:

- Their $\mathrm{V}_{\mathrm{CCI}}$ and VMV values are identical
- If both of the standards need a $\mathrm{V}_{\text {REF }}$ their $\mathrm{V}_{\text {REF }}$ values must be identical (Pro I/O only)


Figure 2-75 • Fusion Pro I/O Bank Detail Showing V $_{\text {REF }}$ Minibanks (north side of AFS600 and AFS1500)
Table 2-54 • I/O Standard Supported by Bank Type

| I/O Bank | Single-Ended I/O Standard | Differential I/O Standard | Voltage-Referenced | Hot-Swap |
| :---: | :---: | :---: | :---: | :---: |
| Hot-Swap | LVTTLIVCMOS 3.3 V , LVCMOS $2.5 \mathrm{~V} / 1.8 \mathrm{~V} /$ 1.5 V, LVCMOS2.5/5.0 V | - | - | Yes |
| LVDS | LVTTLILVCMOS 3.3 V , LVCMOS $2.5 \mathrm{~V} / 1.8 \mathrm{~V} /$ 1.5 V, LVCMOS2.5/5.0 V, 3.3 V PCI/3.3 V PCI-X | LVPECL and LVDS | - | - |
| Pro I/O | LVTTLLLVCMOS 3.3 V , LVCMOS $2.5 \mathrm{~V} / 1.8 \mathrm{~V} /$ 1.5 V, LVCMOS2.5/5.0 V, 3.3 V PCI/3.3 V PCI-X | LVPECL and LVDS | GTL+ 2.5 V / 3.3 V, GTL 2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3 Class I and II | Yes |

Table 2-55 • I/O Bank Support by Device

| I/O Bank | AFS090 | AFS250 | AFS600 | AFS1500 |
| :--- | :---: | :---: | :---: | :---: |
| Hot-Swap | N | N | - | - |
| LVDS, BLVDS, M-LVDS | $\mathrm{E}, \mathrm{W}$ | $\mathrm{E}, \mathrm{W}$ | $\mathrm{E}, \mathrm{W}$ | $\mathrm{E}, \mathrm{W}$ |
| Pro I/O | - | - | N | N |
| Analog Quad | S | S | S | S |

Note: $E=$ East side of the device
$W=$ West side of the device
$N=$ North side of the device
$S=$ South side of the device
Table 2-56 • Fusion $\mathbf{V}_{\text {ClI }}$ Voltages and Compatible Standards

| $\mathbf{V}_{\text {ccI }}$ and VMV (typical) | Compatible Standards |
| :--- | :---: |
| 3.3 V | LVTTL/LVCMOS 3.3, PCI 3.3, SSTL3 (Class I and II)*, GTL+ 3.3, GTL 3.3*, LVPECL |
| 2.5 V | LVCMOS 2.5, LVCMOS 2.5/5.0, SSTL2 (Class I and II)*, GTL+ 2.5*, GTL 2.5*, LVDS, BLVDS, M-LVDS |
| 1.8 V | LVCMOS 1.8 |
| 1.5 V | LVCMOS 1.5, HSTL (Class I)*, HSTL (Class II)* |

Note: *//O standard supported by Pro I/O banks.
Table 2-57 • Fusion $\mathbf{V}_{\text {REF }}$ Voltages and Compatible Standards*

| $\mathbf{V}_{\text {REF }}$ (typical) | Compatible Standards |
| :--- | :---: |
| 1.5 V | SSTL3 (Class I and II) |
| 1.25 V | SSTL2 (Class I and II) |
| 1.0 V | GTL+ 2.5, GTL+ 3.3 |
| 0.8 V | GTL 2.5, GTL 3.3 |
| 0.75 V | HSTL (Class I), HSTL (Class II) |

Note: *//O standard supported by Pro I/O banks.

Table 2-58 • Fusion Standard and LVDS I/O Features

|  |  | $\begin{aligned} & > \\ & m \\ & m \\ & n \\ & 0 \\ & \sum \\ & \sum \\ & Z \\ & Z \end{aligned}$ | $\begin{aligned} & > \\ & \mathbf{n} \\ & \mathbf{N} \\ & \mathbf{n} \\ & \sum_{U}^{\sum} \\ & \geq \end{aligned}$ | $\begin{aligned} & > \\ & \infty \\ & \dot{n} \\ & 0 \\ & \sum_{U}^{n} \\ & Z \end{aligned}$ | $\begin{aligned} & > \\ & \text { n } \\ & \dot{n} \\ & 0 \\ & \sum \\ & \vdots \end{aligned}$ |  |  | $\begin{aligned} & \underset{\mathbf{S}}{\mathbf{N}} \underset{\mathbf{N}}{\mathbf{N}} \\ & + \end{aligned}$ |  | $$ |  |  |  | $\begin{aligned} & \text { O} \\ & \text { in } \\ & +1 \\ & \lambda \\ & n \\ & \text { in } \\ & n \\ & \vdots \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.3 V | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0.80 V |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.00 V |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.50 V |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2.5 V | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0.80 V |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.00 V |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.25 V |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.8 V | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.5 V | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0.75 V |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Note: White box: Allowable I/O standard combinations.
Gray box: Illegal I/O standard combinations.

Fusion Family of Mixed-Signal Flash FPGAs

## Features Supported on Every I/O

Table 2-59 lists all features supported by transmitter/receiver for single-ended and differential I/Os.
Table 2-59 • Fusion Pro I/O Features

| Feature | Description |
| :---: | :---: |
| Single-ended and voltage-referenced transmitter features | - Hot insertion in every mode except PCI or 5 V input tolerant (these modes use clamp diodes and do not allow hot insertion) <br> - Activation of hot insertion (disabling the clamp diode) is selectable by I/Os <br> - Weak pull-up and pull-down <br> - Two slew rates <br> - Skew between output buffer enable/disable time: 2 ns delay (rising edge) and 0 ns delay (falling edge) (see "Selectable Skew Between Output Buffer Enable/Disable Time" on page 2-112 for more information) <br> - Five drive strengths <br> - 5 V tolerant receiver (" 5 V Input Tolerance " section on page 2-107) <br> - LVTTLIVCMOS 3.3 V outputs compatible with 5 V TTL inputs ( $" 5 \mathrm{~V}$ Output Tolerance" section on page 2-110) <br> - High Performance (Table 2-63 on page 2-106) |
| Single-ended receiver features | - Schmitt trigger option <br> - ESD protection <br> - Programmable Delay: 0 ns if bypassed, 0.625 ns with 000 setting, 6.575 ns with 111 setting, 0.85 ns intermediate delay increments (at 25C, 1.5V) <br> - High performance (Table 2-63 on page 2-106) <br> - Separate ground and power planes, GNDQNMV, for input buffers only to avoid output-induced noise in the input circuitry |
| Voltage-referenced differential receiver features | - Programmable Delay: 0 ns if bypassed, 0.625 ns with 000 setting, 6.575 ns with 111 setting, 0.85 ns intermediate delay increments (at $25^{\circ} \mathrm{C}, 1.5 \mathrm{~V}$ ) <br> - High performance (Table 2-63 on page 2-106) <br> - Separate ground and power plane, GNDQ, and VMV pins for input buffers only to avoid output-induced noise in the input circuitry |
| CMOS-style LVDS, BLVDS, M-LVDS, or LVPECL transmitter | - Two I/Os and external resistors are used to provide a CMOS style LVDS, BLVDS, MLVDS, or LVPECL transmitter solution. <br> - Activation of hot insertion (disabling the clamp diode) is selectable by I/Os <br> - Weak pull-up and pull-down <br> - Fast slew rate |
| LVDS/LVPECL differential receiver features | - ESD protection <br> - High performance (Table 2-63 on page 2-106) <br> - Programmable Delay: 0.625 ns with 000 setting, 6.575 ns with 111 setting, 0.85 ns intermediate delay increments (at $25^{\circ} \mathrm{C}, 1.5 \mathrm{~V}$ ) <br> - Separate input buffer ground and power planes to avoid output-induced noise in the input circuitry |

## Fusion Family of Mixed-Signal Flash FPGAs

Table 2-60 • Maximum I/O Frequency for Single-Ended, Voltage-Referenced, and Differential I/Os

| Specification | Performance Up To |
| :--- | :--- |
| LVTTLLVCMOS 3.3 V | 200 MHz |
| LVCMOS 2.5 V | 250 MHz |
| LVCMOS 1.8 V | 200 MHz |
| LVCMOS 1.5 V | 130 MHz |
| PCI | 200 MHz |
| PCI-X | 200 MHz |
| HSTL-I | 300 MHz |
| HSTL-II | 300 MHz |
| SSTL2-I | 300 MHz |
| SSTL2-II | 300 MHz |
| SSTL3-I | 300 MHz |
| SSTL3-II | 300 MHz |
| GTL+ 3.3 V | 300 MHz |
| GTL+2.5 V | 300 MHz |
| GTL 3.3 V | 300 MHz |
| GTL 2.5 V | 300 MHz |
| LVDS | 350 MHz |
| BLVDS | 200 MHz |
| M-LVDS | 200 MHz |
| LVPECL | 300 MHz |

## I/O Registers

Each I/O module contains several input, output, and enable registers. Refer to Figure 2-76 for a simplified representation of the I/O block.
The number of input registers is selected by a set of switches (not shown in Figure 2-76) between registers to implement single or differential data transmission to and from the FPGA core. The Designer software sets these switches for the user.
A common CLR/PRE signal is employed by all I/O registers when I/O register combining is used. Input Register 2 does not have a CLR/PRE pin, as this register is used for DDR implementation. The I/O registers combining must satisfy some rules.


Note: Fusion I/Os have registers to support DDR functionality (see the "Double Data Rate (DDR) Support" section on page 2-102 for more information).
Figure 2-76 • I/O Block Logical Representation

## Double Data Rate (DDR) Support

Fusion Pro $1 / O s$ support 350 MHz DDR inputs and outputs. In DDR mode, new data is present on every transition of the clock signal. Clock and data lines have identical bandwidths and signal integrity requirements, making it very efficient for implementing very highspeed systems.
DDR interfaces can be implemented using HSTL, SSTL, LVDS, and LVPECL I/O standards. In addition, high-speed DDR interfaces can be implemented using LVDS I/O.

## Input Support for DDR

The basic structure to support a DDR input is shown in Figure 2-77. Three input registers are used to capture
incoming data, which is presented to the core on each rising edge of the I/O register clock.
Each I/O tile on Fusion devices supports DDR inputs.

## Output Support for DDR

The basic DDR output structure is shown in Figure 2-78 on page 2-103. New data is presented to the output every half clock cycle. Note: DDR macros and I/O registers do not require additional routing. The combiner automatically recognizes the DDR macro and pushes its registers to the I/O register area at the edge of the chip. The routing delay from the I/O registers to the I/O buffers is already taken into account in the DDR macro.
Refer to the Actel application note Using DDR for Fusion Devices for more information.


Figure 2-77 • DDR Input Register Support in Fusion Devices


## Hot-Swap Support

Hot-swapping (also called hot plugging) is the operation of hot insertion or hot removal of a card in (or from) a powered-up system. The levels of hot-swap support and examples of related applications are described in Table 2-61. The I/Os also need to be configured in hot insertion mode if hot plugging compliance is required.

Table 2-61 • Levels of Hot-Swap Support

| Hot <br> Swapping Level | Description | Power Applied to Device | Bus State | Card Ground Connection | Device Circuitry Connected to Bus Pins | Example of Application with Cards that Contain Fusion Devices | Compliance of Fusion Devices |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Cold-Swap | No | - | - | - | System and card with Actel FPGA chip are powered down, then the card gets plugged into the system, then the power supplies are turned on for the system but not for the FPGA on the card. | Compliant I/Os can but do not have to be set to hot-insertion mode. |
| 2 | Hot-Swap while reset | Yes | Held in reset state | Must be made and maintained for 1 msec before, during, and after insertion/ removal | $-$ | In $\quad \mathrm{PCl}$ specification, hot-plug control circuitry the card isolates card supsplies are at at their nominal operating levels nond stable. | Compliant I/Os can but do not have to be set to hot-insertion mode. |
| 3 | Hot-Swap while bus idle | Yes | Held idle (no ongoing I/O processes during insertion/ removal) | Same as Level 2 | Must remain glitch-free during power-up or power-down | Board bus shared with card bus is "frozen," and there is no toggling activity on the bus,. It is critical that the logic states set on the bus signal do not get disturbed during card insertion/removal. | Compliant with cards with two levels of staging. I/Os have to be set to hot-insertion mode. |
| 4 | Hot-Swap on an active bus | Yes | Bus may have active I/O processes ongoing, but device being inserted or removed must be idle | Same as Level 2 | Same as Level 3 | There is activity on the system bus, and it is critical that the logic states set on the bus signal do not get disturbed during card insertion/removal. | Compliant with cards with two levels of staging. I/Os have to be set to hot-insertion mode. |

For Fusion devices requiring level 3 and/or level 4 compliance, the board drivers connected to Fusion I/Os need to have $10 \mathrm{k} \Omega$ (or lower) output drive resistance at hot insertion, and $1 \mathrm{k} \Omega$ (or lower) output drive resistance at hot removal. This resistance is the transmitter resistance sending signal towards the Fusion I/O and no additional resistance is needed on the board. If that cannot be assured, three levels of staging can be used to meet level 3 and/or level 4 compliance. Cards with two levels of staging should have the following sequence:

- Grounds
- Powers, I/Os, other pins


## Cold-Sparing Support

Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically connected to the system that is in operation. This means that all input buffers of the subsystem must present very high input impedance with no power applied so as not to disturb the operating portion of the system.
Fusion devices support cold-sparing for all I/O configurations. Configurations such as PCl standard requiring clamp diodes on the I/Os can also achieve coldsparing compliance as the clamp diodes get disconnected internally when the supplies are at 0 V .
In designs where Fusion devices are expected to be cold-sparing compliant after supplies are turned off, a discharge resistor, switched resistor, or discharge path needs to be provided from each power supply to ground. If the resistor is chosen, the resistor value must be
calculated based on decoupling capacitance on a given power supply on the board (this decoupling capacitor is in parallel with this resistor). The RC constant should ensure full discharge of supplies before cold-sparing functionality is required. The resistor is necessary to ensure that the power pins get discharged to ground every time there is an interruption of power supply on the device.

## Electrostatic Discharge (ESD) Protection

Fusion devices are tested per JEDEC Standard JESD22-A114-B.

Fusion devices contain clamp diodes at every I/O, global, and power pad. Clamp diodes protect all device pads against damage from ESD as well as from excessive voltage transients.
Each I/O has two clamp diodes. One diode has its positive ( $P$ ) side connected to the pad and its negative $(N)$ side connected to $V_{C C I}$. The second diode has its $P$ side connected to GND, and its N side connected to the pad. During operation, these diodes are normally biased in the Off state, except when transient voltage is significantly above $\mathrm{V}_{\mathrm{CCI}}$ or below GND levels.
By selecting the appropriate I/O configuration, the diode is turned on or off. Refer to Table 2-62 for more information about the I/O standards and the clamp diode.
The second diode is always connected to the pad, regardless of the I/O configuration selected.

Table 2-62 • Fusion Standard, LVDS, and Standard Plus Hot-Swap I/O Hot-Swap and 5 V Input Tolerance Capabilities

| I/O Assignment | Clamp Diode |  | Hot Insertion |  | 5 V Input Tolerance ${ }^{1}$ |  | Input Buffer | Output Buffer |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Standard HotSwap I/O | Standard and LVDS I/O | Standard Hot-Swap I/O | Standard and LVDS I/O | Standard Hot-Swap I/O | Standard and LVDS I/O |  |  |
| 3.3 V LVTTLIVCMOS | No | Yes | Yes | No | Yes ${ }^{1}$ | Yes ${ }^{1}$ | Enable | Disabled |
| $3.3 \mathrm{~V} \mathrm{PCI}, \mathrm{3.3} \mathrm{~V} \mathrm{PCI-X}$ | N/A | Yes | N/A | No | N/A | Yes ${ }^{1}$ | Enabl | Disabled |
| LVCMOS 2.5 V | No | Yes | Yes | No | Yes ${ }^{1}$ | Yes ${ }^{2}$ | Enabl | Disabled |
| LVCMOS $2.5 \mathrm{~V} / 5.0 \mathrm{~V}$ | No | Yes | Yes | No | Yes ${ }^{1}$ | Yes ${ }^{2}$ | Enable | Disabled |
| LVCMOS 1.8 V | No | Yes | Yes | No | No | No | Enable | Disabled |
| LVCMOS 1.5 V | No | Yes | Yes | No | No | No | Enable | Disabled |
| Differential, LVDS/BLVDS/ M-LVDS/LVPECL ${ }^{3}$ | N/A | Yes | N/A | No | N/A | No | Enable | Disabled |

## Notes:

1. Can be implemented with an external IDT bus switch, resistor divider, or zener with resistor.
2. Can be implemented with an external resistor and an internal clamp diode.
3. Bidirectional LVPECL buffers are not supported. I/Os can either be configured as input buffers or output buffers.

## Fusion Family of Mixed-Signal Flash FPGAs

Table 2-63 • Fusion Pro I/O Hot-Swap and 5 V Input Tolerance Capabilities

| I/O Assignment | Clamp Diode | Hot Insertion | 5 V Input Tolerance | Input Buffer | Output Buffer |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3.3 V LVTTL/LVCMOS | No | Yes | Yes ${ }^{1}$ | Enabled/Disabled |  |
| $3.3 \mathrm{VPCI}, 3.3 \mathrm{VPCI}-X$ | Yes | No | Yes ${ }^{1}$ | Enabled/Disabled |  |
| LVCMOS $2.5 \mathrm{~V}^{3}$ | No | Yes | No | Enabled/Disabled |  |
| LVCMOS $2.5 \mathrm{~V} / 5.0 \mathrm{~V}^{3}$ | Yes | No | Yes ${ }^{2}$ | Enabled/Disabled |  |
| LVCMOS 1.8 V | No | Yes | No | Enabled/Disabled |  |
| LVCMOS 1.5 V | No | Yes | No | Enabled/Disabled |  |
| Voltage-Referenced Input Buffer | No | Yes | No | Enabled/Disabled |  |
| Differential, LVDS/BLVDS/M-LVDS/LVPECL ${ }^{4}$ | No | Yes | No | Enabled/Disabled |  |

## Notes:

1. Can be implemented with an external IDT bus switch, resistor divider, or zener with resistor.
2. Can be implemented with an external resistor and an internal clamp diode.
3. In the SmartGen, FlashROM, Flash Memory System Builder, and Analog System Builder User's Guide, select the LVCMOS5 macro for the LVCMOS 2.5 V/ 5.0 V I/O standard or the LVCMOS25 macro for the LVCMOS 2.5 V I/O standard.
4. Bidirectional LVPECL buffers are not supported. I/Os can either be configured as input buffers or output buffers.

## 5 V Input Tolerance

I/Os can support 5 V input tolerance when LVTTL 3.3 V , LVCMOS 3.3 V, LVCMOS $2.5 \mathrm{~V} / 5 \mathrm{~V}$, and LVCMOS 2.5 V configurations are used (see Table 2-64 on page 2-110 for more details). There are four recommended solutions (see Figure 2-79 to Figure 2-82 on page 2-110 for details of board and macro setups) to achieve 5 V receiver tolerance. All the solutions meet a common requirement of limiting the voltage at the I/O input to 3.6 V or less. In fact, the I/O absolute maximum voltage rating is 3.6 V , and any voltage above 3.6 V may cause long-term gate oxide failures.

## Solution 1

The board-level design needs to ensure that the reflected waveform at the pad does not exceed the limits provided in Table 3-4 on page 3-3. This is a long-term reliability requirement.
This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the two external resistors as explained below. Relying on the diode clamping would create an excessive pad DC voltage of $3.3 \mathrm{~V}+0.7 \mathrm{~V}=4 \mathrm{~V}$.
Here are some examples of possible resistor values (based on a simplified simulation model with no line effects, and $10 \Omega$ transmitter output resistance, where Rtx_out_high $=\left(\mathrm{V}_{\mathrm{CCI}}-\mathrm{V}_{\mathrm{OH}}\right) / \mathrm{I}_{\mathrm{OH}}$, Rtx_out_low $\left.=\mathrm{V}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OL}}\right)$.

Example 1 (high speed, high current):
Rtx_out_high $=$ Rtx_out_low $=10 \Omega$
$\mathrm{R} 1=36 \Omega(+/-5 \%), \mathrm{P}(\mathrm{r} 1) \mathrm{min}=0.069 \Omega$
$R 2=82 \Omega(+/-5 \%), P(r 2) \min =0.158 \Omega$
Imax_tx $=5.5 \mathrm{~V} /(82 * 0.95+36 * 0.95+10)=45.04 \mathrm{~mA}$
$t_{\text {RISE }}=t_{\text {FALL }}=0.85 \mathrm{~ns}$ at C_pad_load $=10 \mathrm{pF}$ (includes up to $25 \%$ safety margin)
$t_{\text {RISE }}=\mathrm{t}_{\text {FALL }}=4 \mathrm{~ns}$ at C_pad_load $=50 \mathrm{pF}$ (includes up to $25 \%$ safety margin)
Example 2 (low-medium speed, medium current):

$$
\begin{aligned}
& \text { Rtx_out_high }=\text { Rtx_out_low }=10 \Omega \\
& \text { R1 }=220 \Omega(+/-5 \%), \mathrm{P}(\mathrm{r} 1) \min =0.018 \Omega \\
& \mathrm{R} 2=390 \Omega(+/-5 \%), \mathrm{P}(\mathrm{r} 2) \mathrm{min}=0.032 \Omega \\
& I_{\text {max_t }}=5.5 \mathrm{~V} /(220 * 0.95+390 * 0.95+10)=9.17 \mathrm{~mA} \\
& \mathrm{t}_{\text {RISE }}=\mathrm{t}_{\text {FALL }}=4 \mathrm{~ns} \text { at C_pad_load }=10 \mathrm{pF} \text { (includes up } \\
& \text { to } 25 \% \text { safety margin) } \\
& \mathrm{t}_{\text {RISE }}=\mathrm{t}_{\text {FALL }}=20 \text { ns at C_pad_load }=50 \mathrm{pF} \text { (includes up } \\
& \text { to } 25 \% \text { safety margin) }
\end{aligned}
$$

Other values of resistors are also allowed as long as the resistors are sized appropriately to limit the voltage at the receiving end to $2.5 \mathrm{~V}<\operatorname{Vin}(r x)<3.6 \mathrm{~V}^{*}$ when the transmitter sends a logic '1'. This range of Vin_dc(rx) must be assured for any combination of transmitter supply ( $5 \mathrm{~V}+/-0.5 \mathrm{~V}$ ), transmitter output resistance, and board resistor tolerances.
Temporary overshoots are allowed according to Table 3-4 on page 3-3.

## Solution 1



[^4]
## Solution 2

The board-level design must ensure that the reflected waveform at the pad does not exceed limits provided in Table 3-4 on page 3-3. This is a long-term reliability requirement.
This scheme will also work for a $3.3 \mathrm{~V} \mathrm{PCI} / \mathrm{PCIX}$ configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the external resistors and zener, as shown in Figure 2-80. Relying on the diode clamping would create an excessive pad DC voltage of $3.3 \mathrm{~V}+0.7 \mathrm{~V}=4 \mathrm{~V}$.

## Solution 2



Figure 2-80 • Solution 2

## Solution 3

The board-level design must ensure that the reflected waveform at the pad does not exceed limits provided in Table 3-4 on page 3-3. This is a long-term reliability requirement.
This scheme will also work for a $3.3 \mathrm{~V} \mathrm{PCI} / \mathrm{PCIX}$ configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the bus switch, as shown in Figure 2-81. Relying on the diode clamping would create an excessive pad DC voltage of $3.3 \mathrm{~V}+0.7 \mathrm{~V}=4 \mathrm{~V}$.


Figure 2-81 • Solution 3

## Solution 4

## Solution 4



Figure 2-82 • Solution 4
Table 2-64 • Comparison Table for 5-V-Compliant Receiver Scheme

| Scheme | Board Components | Speed | Current Limitations |
| :---: | :---: | :---: | :---: |
| 1 | Two resistors | Low to High ${ }^{1}$ | Limited by transmitter's drive strength |
| 2 | Resistor and Zener 3.3 V | Medium | Limited by transmitter's drive strength |
| 3 | Bus switch | High | N/A |
| 4 | Minimum resistor value ${ }^{2}$ <br> - $R=47 \Omega$ at $T_{j}=70^{\circ} \mathrm{C}$ <br> - $R=150 \Omega$ at $T_{j}=85^{\circ} \mathrm{C}$ <br> - $R=420 \Omega$ at $T_{j}=100^{\circ} \mathrm{C}$ | Medium | Maximum diode current at 100\% duty cycle, signal constantly at "1" <br> - 52.7 mA at $\mathrm{T}_{j}=70^{\circ} \mathrm{C} / 10$-year lifetime <br> - 16.5 mA at $\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C} / 10$-year lifetime <br> - 5.9 mA at $\mathrm{T}_{\mathrm{J}}=100^{\circ} \mathrm{C} / 10$-year lifetime <br> For duty cycles other than 100\%, the currents can be increased by a factor $=1 /$ duty cycle <br> Example: $20 \%$ duty cycle at $70^{\circ} \mathrm{C}$ <br> Maximum current $=(1 / 0.2) * 52.7 \mathrm{~mA}=5 * 52.7 \mathrm{~mA}=263.5 \mathrm{~mA}$ |

## Notes:

. Speed and current consumption increase as the board resistance values decrease.
2. Resistor values ensure I/O diode long term reliability.

## 5 V Output Tolerance

Fusion I/Os must be set to 3.3 V LVTTL or 3.3 V LVCMOS mode to reliably drive 5 V TTL receivers. It is also critical that there be NO external I/O pull-up resistor to 5 V , since this resistor would pull the I/O pad voltage beyond the 3.6 V absolute maximum value, and consequently cause damage to the I/O.

When set to 3.3 V LVTTL or 3.3 V LVCMOS mode, Fusion I/Os can directly drive signals into 5 V TTL receivers. In fact, $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ in both 3.3 V LVTTL and 3.3 V LVCMOS modes exceed the $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$ level requirements of $5 \mathrm{~V} T \mathrm{~T}$ receivers. Therefore, level ' 1 ' and level ' 0 ' will be recognized correctly by 5 V TTL receivers.

## Simultaneous Switching Outputs and Printed Circuit Board Layout

Simultaneously switching outputs (SSO) can produce signal integrity problems on adjacent signals that are not part of SSO bus. Both inductive and capacitive coupling parasitics of bond wires inside packages and of traces on PCB boards will transfer noise from SSO busses onto signals adjacent to those busses. Additionally, SSOs can produce ground bounce noise and $\mathrm{V}_{\mathrm{CCI}}$ dip noise. These two noise types are caused by rapidly changing currents through GND and $\mathrm{V}_{\text {CCI }}$ package pin inductances during switching activities:

- Ground bounce noise voltage $=\mathrm{L}$ (GND) * di/dt
- $\mathrm{V}_{\mathrm{CCI}}$ dip noise voltage $=\mathrm{L}\left(\mathrm{V}_{\mathrm{CCI}}\right)$ * di/dt

Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The shielding should be done both on the board and inside the package unless otherwise described.

In-package shielding can be achieved in several ways; the required shielding will vary depending on whether pins next to SSO bus are LVTTL/LVCMOS inputs, LVTTL/ LVCMOS outputs, or GTL/SSTL/HSTL/LVDS/LVPECL inputs and outputs. Board traces in the vicinity of the SSO bus have to be adequately shielded from mutual coupling and inductive noise that can be generated by SSO bus. Also, noise generated by SSO bus needs to be reduced inside the package.
Printed circuit boards (PCB) perform an important function in feeding stable supply voltage to the IC and at the same time maintain signal integrity between devices.
Key issues that need to considered are:

- Power and Ground plane design and decoupling network design
- Transmission Line Reflections and Terminations


## Fusion Family of Mixed-Signal Flash FPGAs

## Selectable Skew Between Output Buffer Enable/Disable Time

The configurable skew block is used to delay the output buffer assertion (enable) without affecting deassertion (disable) time.


Figure 2-83 • Block Diagram of Output Enable Path


## Figure 2-84 • Timing Diagram (Option1: Bypasses Skew Circuit)



Figure 2-85 • Timing Diagram (Option 2: Enables Skew Circuit)

At the system level, the skew circuit can be used in applications where transmission activities on bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that can prevent bus contention and subsequent data loss and/or transmitter overstress due to transmitter-to-transmitter current shorts. Figure 2-86 presents an example of the
skew circuit implementation in a bidirectional communication system. Figure 2-87 shows how bus contention is created, and Figure 2-88 on page 2-114 shows how it can be avoided with the skew circuit.


Figure 2-86 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using Fusion Devices


Figure 2-87 • Timing Diagram (Bypasses Skew Circuit)


Result: No Bus Contention

Figure 2-88 • Timing Diagram (with Skew Circuit Selected)

## Weak Pull-Up and Weak Pull-Down Resistors

Fusion devices support optional weak pull-up and pulldown resistors per I/O pin. When the I/O is pulled up, it is connected to the $\mathrm{V}_{\mathrm{CCl}}$ of its corresponding I/O bank. When it is pulled-down it is connected to GND. Refer to Table 2-80 on page 2-131 for more information.

## Slew Rate Control and Drive Strength

Fusion devices support output slew rate control: high and low. The Standard hot-swap I/Os do not support slew rate control. The high slew rate option is recommended to minimize the propagation delay. This high-speed option may introduce noise into the system if appropriate signal integrity measures are not adopted. Selecting a low slew rate reduces this kind of noise but adds some delays in the system. Low slew rate is recommended when bus transients are expected. Drive strength should also be selected according to the design requirements and noise immunity of the system.

The output slew rate and multiple drive strength controls are available in LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V, LVCMOS $2.5 \mathrm{~V} / 5.0 \mathrm{~V}$ input, LVCMOS 1.8 V , and LVCMOS 1.5 V. All other I/O standards have a high output slew rate by default.
For Fusion slew rate and drive strength specifications, refer to the appropriate I/O bank table:

- Fusion hot-swap I/O (Table 2-65 on page 2-115)
- Fusion LVDS I/O (Table 2-66 on page 2-115)
- Fusion Pro I/O (Table 2-67 on page 2-115)

Table 2-69 on page 2-117 lists the default values for the above selectable I/O attributes as well as those that are preset for that I/O standard.
Refer to Table 2-65, Table 2-66, and Table 2-67 on page 2-115 for SLEW and OUT_DRIVE settings. Table 2-68 on page 2-116 lists the I/O default attributes. Table 2-69 on page 2-117 lists the voltages for the supported I/O standards.

Table 2-65 • Fusion Hot-Swap I/O Standards-OUT_DRIVE Settings

| I/O Standards | OUT_DRIVE (mA) |  |  |
| :--- | :---: | :---: | :---: |
|  | $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{8}$ |
| LVTTLLVCMOS 3.3 V | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| LVCMOS 2.5 V | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| LVCMOS 1.8 V | $\checkmark$ | $\checkmark$ | - |
| LVCMOS 1.5 V | $\checkmark$ | - | - |

Table 2-66 • Fusion LVDS I/O Standards-SLEW and OUT_DRIVE Settings

| I/O Standards | OUT_DRIVE (mA) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 4 | 6 | 8 | 12 | 16 |  |  |
| LVTTL/LVCMOS 3.3 V | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | High | Low |
| LVCMOS 2.5 V | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | High | Low |
| LVCMOS 1.8 V | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | High | Low |
| LVCMOS 1.5 V | $\checkmark$ | $\checkmark$ | - | - | - | - | High | Low |

Table 2-67 • Fusion Pro I/O Standards-SLEW and OUT_DRIVE Settings

| I/O Standards | OUT_DRIVE (mA) |  |  |  |  |  |  | Slew |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 4 | 6 | 8 | 12 | 16 | 24 |  |  |
| LVTTLLVCMOS 3.3 V | $\checkmark$ | High | Low |
| LVCMOS 2.5 V | $\checkmark$ | High | Low |
| LVCMOS 2.5 V/5.0 V | $\checkmark$ | High | Low |
| LVCMOS 1.8 V | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | High | Low |
| LVCMOS 1.5 V | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | High | Low |

Table 2-68 • Fusion Pro I/O Default Attributes

| I/O Standards |  |  |  | $\begin{aligned} & \underset{2}{2} \\ & \underset{\sim}{n} \\ & \underset{\sim}{u} \end{aligned}$ | $\begin{aligned} & \bar{\lambda} \\ & \bar{c} \\ & 0 \\ & \vdots \\ & \frac{2}{2} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LVTTL/LVCMOS 3.3 V | Refer to the following tables for more information: <br> - Table 2-65 on page 2-115 <br> - Table 2-66 on page 2-115 <br> - Table 2-67 on page 2-115 | Refer to the following tables for more information: <br> - Table 2-65 on page 2-115 <br> - Table 2-66 on page 2-115 <br> - Table 2-67 on page 2-115 | Off | None | 35pF | - | Off | 0 | Off |
| LVCMOS 2.5 V |  |  | Off | None | 35 pF | - | Off | 0 | Off |
| LVCMOS 2.5/5.0 V |  |  | Off | None | 35 pF | - | Off | 0 | Off |
| LVCMOS 1.8 V |  |  | Off | None | 35 pF | - | Off | 0 | Off |
| LVCMOS 1.5 V |  |  | Off | None | 35 pF | - | Off | 0 | Off |
| $\mathrm{PCI}(3.3 \mathrm{~V})$ |  |  | Off | None | 10 pF | - | Off | 0 | Off |
| PCI-X (3.3 V) |  |  | Off | None | 10 pF | - | Off | 0 | Off |
| GTL+ (3.3 V) |  |  | Off | None | 10 pF | - | Off | 0 | Off |
| GTL+ (2.5 V) |  |  | Off | None | 10 pF | - | Off | 0 | Off |
| GTL (3.3 V) |  |  | Off | None | 10 pF | - | Off | 0 | Off |
| GTL (2.5 V) |  |  | Off | None | 10 pF | - | Off | 0 | Off |
| HSTL Class I |  |  | Off | None | 20 pF | - | Off | 0 | Off |
| HSTL Class II |  |  | Off | None | 20 pF | - | Off | 0 | Off |
| SSTL2 Class I and II |  |  | Off | None | 30 pF | - | Off | 0 | Off |
| SSTL3 Class I and II |  |  | Off | None | 30 pF | - | Off | 0 | Off |
| LVDS, BLVDS, M-LVDS |  |  | Off | None | 0 pF | - | Off | 0 | Off |
| LVPECL |  |  | Off | None | 0 pF | - | Off | 0 | Off |

Table 2-69 • Fusion Pro I/O Supported Standards and the Corresponding $\mathbf{V}_{\mathbf{R E F}}$ and $\mathbf{V}_{\mathbf{T T}}$ Voltages

| I/O Standard | Input/Output Supply Voltage (VMVtyp/V CCI_TYP) | Input Reference Voltage ( $\mathrm{V}_{\text {REF_TYP }}$ ) | Board Termination Voltage ( $\mathrm{V}_{\text {TT_TYP }}$ ) |
| :---: | :---: | :---: | :---: |
| LVTTLIVCMOS 3.3 V | 3.30 V | - | - |
| LVCMOS 2.5 V | 2.50 V | - | - |
| LVCMOS 2.5 V/5.0 V Input | 2.50 V | - | - |
| LVCMOS 1.8 V | 1.80 V | - | - |
| LVCMOS 1.5 V | 1.50 V | - | - |
| PCI 3.3 V | 3.30 V | - | - |
| PCI-X 3.3 V | 3.30 V | - | - |
| GTL+ 3.3 V | 3.30 V | 1.00 V | 1.50 V |
| GTL+ 2.5 V | 2.50 V | 1.00 V | 1.50 V |
| GTL 3.3 V | 3.30 V | 0.80 V | 1.20 V |
| GTL 2.5 V | 2.50 V | 0.80 V | 1.20 V |
| HSTL Class I | 1.50 V | 0.75 V | 0.75 V |
| HSTL Class II | 1.50 V | 0.75 V | 0.75 V |
| SSTL3 Class I | 3.30 V | 1.50 V | 1.50 V |
| SSTL3 Class II | 3.30 V | 1.50 V | 1.50 V |
| SSTL2 Class I | 2.50 V | 1.25 V | 1.25 V |
| SSTL2 Class II | 2.50 V | 1.25 V | 1.25 V |
| LVDS, BLVDS, M-LVDS | 2.50 V | - | - |
| LVPECL | 3.30 V | - | - |

## I/O Software Support

In the Fusion development software, default settings have been defined for the various I/O standards that are supported. Changes can be made to the default settings via the use of attributes; however, not all I/O attributes are applicable for all I/O standards. Table 2-70 and Table 2-71 list the valid I/O attributes that can be manipulated by the user for each I/O standard.
Single-ended I/O standards in Fusion support up to five different drive strengths.
Table 2-70 • Fusion Standard and LVDS I/O Attributes vs. I/O Standard Applications

| I/O Standards | SLEW <br> (output <br> only) | OUT_DRIVE <br> (output <br> only) | SKEW (all <br> macros with <br> OE)* | RES_PULL | OUT_LOAD <br> (output <br> only) | COMBINE_REGISTER |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| LVTTL/LVCMOS 3.3 V | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| LVCMOS 2.5 V | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| LVCMOS $2.5 / 5.0 \mathrm{~V}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| LVCMOS 1.8 V | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| LVCMOS 1.5 V | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| PCI (3.3 V) |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ |
| PCI-X (3.3 V) | $\checkmark$ |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ |
| LVDS, BLVDS, <br> M-LVDS |  |  |  |  |  |  |
| LVPECL |  |  |  |  | $\checkmark$ |  |

Note: *This does not apply to the north I/O bank on AFS090 and AFS250 devices.
Table 2-71 • Fusion Pro I/O Attributes vs. I/O Standard Applications

| I/O Standards |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LVTTL/LVCMOS 3.3 V | $\checkmark$ |
| LVCMOS 2.5 V | $\checkmark$ |
| LVCMOS 2.5/5.0 V | $\checkmark$ |
| LVCMOS 1.8 V | $\checkmark$ |
| LVCMOS 1.5 V | $\checkmark$ |
| $\mathrm{PCI}(3.3 \mathrm{~V})$ |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| PCI-X (3.3 V) | $\checkmark$ |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
| GTL+ (3.3 V) |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| GTL+ (2.5 V) |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| GTL (3.3 V) |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |

Table 2-71 • Fusion Pro I/O Attributes vs. I/O Standard Applications (Continued)

| I/O Standards |  |  |  | $\begin{aligned} & \underset{\mathbf{l}}{\mathbf{2}} \\ & \underset{\sim}{\boldsymbol{u}} \end{aligned}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GTL (2.5 V) |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| HSTL Class I |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| HSTL Class II |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| SSTL2 Class I and II |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| SSTL3 Class I and II |  |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| LVDS, BLVDS, M-LVDS |  |  | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |
| LVPECL |  |  |  |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |

Table 2-72 lists the default values for the above selectable I/O attributes as well as those that are preset for that I/O standard. See Table 2-65, Table 2-66, and Table 2-67 on page 2-115 for SLEW and OUT_DRIVE settings.

Table 2-72 • I/O Default Attributes

| I/O Standards | SLEW <br> (output only) | OUT_DRIVE (output only) | SKEW) (tribuf and bibuf only) | RES_PULL | OUT_LOAD (output only) | COMBINE_REGISTER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LVTTLIVCMOS 3.3 V | Refer to the following tables for more information: <br> - Table 2-65 on page 2-115 <br> - Table 2-66 on page 2-115 <br> - Table 2-67 on page 2-115 | Refer to the following tables for more information: <br> - Table 2-65 on page 2-115 <br> - Table 2-66 on page 2-115 <br> - Table 2-67 on page 2-115 | Off | None | 35 pF | - |
| LVCMOS 2.5 V |  |  | Off | None | 35 pF | - |
| LVCMOS 2.5/5.0 V |  |  | Off | None | 35 pF | - |
| LVCMOS 1.8 V |  |  | Off | None | 35 pF | - |
| LVCMOS 1.5 V |  |  | Off | None | 35 pF | - |
| $\mathrm{PCI}(3.3 \mathrm{~V})$ |  |  | Off | None | 10 pF | - |
| PCI-X (3.3 V) |  |  | Off | None | 10 pF | - |
| LVDS, BLVDS, M-LVDS |  |  | Off | None | - | - |
| LVPECL |  |  | Off | None | - | - |

## User I/O Naming Convention

Due to the comprehensive and flexible nature of Fusion device user I/Os, a naming scheme is used to show the details of the I/O (Figure 2-89 and Figure 2-90 on page 2-121). The name identifies to which I/O bank it belongs, as well as the pairing and pin polarity for differential I/Os.
$\mathrm{I} / \mathrm{O}$ Nomenclature $=\mathrm{Gmn} / \mathrm{IO} \mathrm{I}_{\mathrm{w}} \mathrm{BByVz}$
Gmn is only used for I/Os that also have CCC access - i.e., global pins.
$\mathrm{G}=$ Global
$m=$ Global pin location associated with each CCC on the device: A (northwest corner), B (northeast corner), C (east middle), D (southeast corner), E (southwest corner), and F (west middle).
$\mathrm{n}=$ Global input MUX and pin number of the associated Global location m, either A0, A1, A2, B0, B1, B2, C0, C1, or C2. Figure 2-22 on page 2-25 shows the three input pins per each clock source MUX at the CCC location $m$.
$\mathrm{u}=\mathrm{I} / \mathrm{O}$ pair number in the bank, starting at 00 from the northwest I/O bank in a clockwise direction.
$x \quad=\mathrm{P}$ (Positive) or N (Negative) for differential pairs, or R (Regular - single-ended) for the I/Os that support singleended and voltage-referenced I/O standards only. U (Positive-LVDS only) or V (Negative-LVDS only) restrict the I/O differential pair from being selected as LVPECL pair.
$\mathrm{w}=\mathrm{D}$ (Differential Pair), P (Pair), S (Single-Ended). D (Differential Pair) if both members of the pair are bonded out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both members of the pair are bonded out but do not meet the adjacency requirement; or $S$ (Single-Ended) if the I/O pair is not bonded out. For Differential (D) pairs, adjacency for ball grid packages means only vertical or horizontal. Diagonal adjacency does not meet the requirements for a true differential pair.
B = Bank
$y=$ Bank number [0..3]. The Bank number starts at 0 from the northwest I/O bank and proceeds in a clockwise direction.
$\mathrm{V}=$ Reference voltage
z = Minibank number


[^5]

Figure 2-90 • Naming Conventions of Fusion Devices with Four I/O Banks

## Fusion Family of Mixed-Signal Flash FPGAs

## User I/O Characteristics

## Timing Model



Figure 2-91 • Timing Model
Operating Conditions: -2 Speed, Commercial Temperature Range ( $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$ ), Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$


$$
\begin{aligned}
& t_{\text {PY }}=\operatorname{MAX}\left(\mathrm{t}_{\text {PY }}(\mathrm{R}), \mathrm{t}_{\text {PY }}(\mathrm{F})\right) \\
& \mathrm{t}_{\text {PYS }}=\operatorname{MAX}\left(\mathrm{t}_{\text {PYS }}(\mathrm{R}), \mathrm{t}_{\text {PYS }}(\mathrm{F})\right) \\
& \mathrm{t}_{\text {DIN }}=\operatorname{MAX}\left(\mathrm{t}_{\text {DIN }}(\mathrm{R}), \mathrm{t}_{\mathrm{DIN}}(\mathrm{~F})\right)
\end{aligned}
$$



Figure 2-92• Input Buffer Timing Model and Delays (example)

## Fusion Family of Mixed-Signal Flash FPGAs




Figure 2-94 • Tristate Output Buffer Timing Model and Delays (example)

## Overview of I/O Performance <br> Summary of I/O DC Input and Output Levels - Default I/O Software Settings

Table 2-73 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions

| I/O Standard | Drive Strength | Slew Rate | $\mathbf{V}_{\text {IL }}$ |  | $\mathbf{V}_{\mathbf{I H}}$ |  | $\mathrm{V}_{\mathbf{O L}}$ | $\mathrm{V}_{\mathrm{OH}}$ | IOL | $\mathrm{IOH}^{\text {O }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min, V | Max, V | Min, V | Max, V | Max, V | Min, V | mA | mA |
| 3.3 V LVTTL / <br> 3.3 V LVCMOS | 12 mA | High | -0.3 | 0.8 | 2 | 3.6 | 0.4 | 2.4 | 12 | 12 |
| 2.5 V LVCMOS | 12 mA | High | -0.3 | 0.7 | 1.7 | 3.6 | 0.7 | 1.7 | 12 | 12 |
| 1.8 V LVCMOS | 12 mA | High | -0.3 | 0.35 * $\mathrm{V}_{\text {ClI }}$ | 0.65 * $\mathrm{V}_{\mathrm{CCI}}$ | 3.6 | 0.45 | $\mathrm{V}_{\text {CCI }}-0.45$ | 12 | 12 |
| 1.5 V LVCMOS | 12 mA | High | -0.3 | $0.30 \mathrm{~V}_{\mathrm{ClI}}$ | 0.7 * $\mathrm{V}_{\mathrm{CCI}}$ | 3.6 | 0.25 * $\mathrm{V}_{\mathrm{ClI}}$ | 0.75 * CCl | 12 | 12 |
| 3.3 V PCI | Per PCI Specification |  |  |  |  |  |  |  |  |  |
| $3.3 \mathrm{~V} \mathrm{PCI-X}$ | Per PCI-X Specification |  |  |  |  |  |  |  |  |  |
| 3.3 V GTL | $25 \mathrm{~mA}^{2}$ | High | -0.3 | $V_{\text {REF }}-0.05$ | $\mathrm{V}_{\text {REF }}+0.05$ | 3.6 | 0.4 | - | 25 | 25 |
| 2.5 V GTL | $25 \mathrm{~mA}^{2}$ | High | -0.3 | $\mathrm{V}_{\text {REF }}-0.05$ | $\mathrm{V}_{\text {REF }}+0.05$ | 3.6 | 0.4 | - | 25 | 25 |
| 3.3 V GTL+ | 35 mA | High | -0.3 | $\mathrm{V}_{\text {REF }}-0.1$ | $\mathrm{V}_{\text {REF }}+0.1$ | 3.6 | 0.6 | - | 51 | 51 |
| 2.5 V GTL+ | 33 mA | High | -0.3 | $\mathrm{V}_{\text {REF }}-0.1$ | $\mathrm{V}_{\text {REF }}+0.1$ | 3.6 | 0.6 | - | 40 | 40 |
| HSTL (I) | 8 mA | High | -0.3 | $V_{\text {REF }}-0.1$ | $\mathrm{V}_{\text {REF }}+0.1$ | 3.6 | 0.4 | $\mathrm{V}_{\mathrm{CCI}}-0.4$ | 8 | 8 |
| HSTL (II) | $15 \mathrm{~mA}^{2}$ | High | -0.3 | $V_{\text {REF }}-0.1$ | $\mathrm{V}_{\text {REF }}+0.1$ | 3.6 | 0.4 | $\mathrm{V}_{\mathrm{CCI}}-0.4$ | 15 | 15 |
| SSTL2 (I) | 15 mA | High | -0.3 | $\mathrm{V}_{\text {REF }}-0.2$ | $\mathrm{V}_{\text {REF }}+0.2$ | 3.6 | 0.54 | $\mathrm{V}_{\text {CCI }}-0.62$ | 15 | 15 |
| SSTL2 (II) | 18 mA | High | -0.3 | $\mathrm{V}_{\text {REF }}-0.2$ | $\mathrm{V}_{\text {REF }}+0.2$ | 3.6 | 0.35 | $\mathrm{V}_{\text {CCI }}-0.43$ | 18 | 18 |
| SSTL3 (I) | 14 mA | High | -0.3 | $V_{\text {REF }}-0.2$ | $\mathrm{V}_{\text {REF }}+0.2$ | 3.6 | 0.7 | $\mathrm{V}_{\text {ClI }}-1.1$ | 14 | 14 |
| SSTL3 (II) | 21 mA | High | -0.3 | $\mathrm{V}_{\text {REF }}-0.2$ | $\mathrm{V}_{\text {REF }}+0.2$ | 3.6 | 0.5 | $\mathrm{V}_{\mathrm{CCI}}-0.9$ | 21 | 21 |

## Notes:

1. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.
2. Output drive strength is below JEDEC specification.

Table 2-74 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions

| DC I/O Standards | Commercial ${ }^{\mathbf{1}}$ |  | Industrial ${ }^{\mathbf{2}}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{I}_{\text {IL }}$ | $\mathbf{I I H}$ | $\mathrm{I}_{\text {IL }}$ | $\mathbf{I I H}$ |
|  | $\boldsymbol{\mu} \mathbf{A}$ | $\boldsymbol{\mu} \mathbf{A}$ | $\boldsymbol{\mu} \mathbf{A}$ | $\boldsymbol{\mu} \mathbf{A}$ |
| 3.3 V LVTTL / <br> 3.3 V LVCMOS | 10 | 10 | 15 | 15 |
| 2.5 V LVCMOS | 10 | 10 | 15 | 15 |
| 1.8 V LVCMOS | 10 | 10 | 15 | 15 |
| 1.5 V LVCMOS | 10 | 10 | 15 | 15 |
| 3.3 V PCI | 10 | 10 | 15 | 15 |
| $3.3 \mathrm{~V} \mathrm{PCI-X}$ | 10 | 10 | 15 | 15 |
| 3.3 V GTL | 10 | 10 | 15 | 15 |
| 2.5 V GTL | 10 | 10 | 15 | 15 |
| $3.3 \mathrm{~V} \mathrm{GTL}+$ | 10 | 10 | 15 | 15 |
| 2.5 V GTL+ | 10 | 10 | 15 | 15 |
| HSTL (I) | 10 | 10 | 15 | 15 |
| HSTL (II) | 10 | 10 | 15 | 15 |
| SSTL2 (I) | 10 | 10 | 15 | 15 |
| SSTL2 (II) | 10 | 10 | 15 | 15 |
| SSTL3 (I) | 10 | 10 | 15 | 15 |
| SSTL3 (II) | 10 | 10 | 15 | 15 |

## Notes:

1. Commercial range $\left(0^{\circ} \mathrm{C}<T_{J}<70^{\circ} \mathrm{C}\right)$
2. Industrial range $\left(-40^{\circ} \mathrm{C}<T_{J}<85^{\circ} \mathrm{C}\right)$

Fusion Family of Mixed-Signal Flash FPGAs

## Summary of I/O Timing Characteristics - Default I/O Software Settings

Table 2-75 • Summary of AC Measuring Points

| Standard | Input Reference Voltage ( $V_{\text {REF_TYP }}$ ) | Board Termination Voltage ( $\mathrm{V}_{\text {TT_REF }}$ ) | Measuring Trip Point ( $\mathbf{V}_{\text {trip }}$ ) |
| :---: | :---: | :---: | :---: |
| 3.3 V LVTTL / <br> 3.3 V LVCMOS | - | - | 1.4 V |
| 2.5 V LVCMOS | - | - | 1.2 V |
| 1.8 V LVCMOS | - | - | 0.90 V |
| 1.5 V LVCMOS | - | - | 0.75 V |
| 3.3 VPCI | - | - | $\begin{aligned} & 0.285 * V_{\mathrm{CCI}}(R R) \\ & \left.0.615 * \mathrm{~V}_{\mathrm{CCI}}(\mathrm{FF})\right) \end{aligned}$ |
| $3.3 \mathrm{~V} \mathrm{PCI-X}$ | - | - | $\begin{aligned} & 0.285 * V_{\mathrm{CCI}}(R R) \\ & 0.615 * \mathrm{~V}_{\mathrm{CCI}}(\mathrm{FF}) \end{aligned}$ |
| 3.3 V GTL | 0.8 V | 1.2 V | $\mathrm{V}_{\text {REF }}$ |
| 2.5 V GTL | 0.8 V | 1.2 V | $V_{\text {REF }}$ |
| $3.3 \mathrm{~V} \mathrm{GTL}+$ | 1.0 V | 1.5 V | $V_{\text {REF }}$ |
| 2.5 V GTL+ | 1.0 V | 1.5 V | $V_{\text {REF }}$ |
| HSTL (I) | 0.75 V | 0.75 V | $V_{\text {REF }}$ |
| HSTL (II) | 0.75 V | 0.75 V | $V_{\text {REF }}$ |
| SSTL2 (I) | 1.25 V | 1.25 V | $V_{\text {REF }}$ |
| SSTL2 (II) | 1.25 V | 1.25 V | $V_{\text {REF }}$ |
| SSTL3 (I) | 1.5 V | 1.485 V | $V_{\text {REF }}$ |
| SSTL3 (II) | 1.5 V | 1.485 V | $V_{\text {REF }}$ |
| LVDS, BLVDS, M-LVDS | - | - | Cross point |
| LVPECL | - | - | Cross point |

Table 2-76 • I/O AC Parameter Definitions

| Parameter |  |
| :--- | :--- |
| $t_{\text {DP }}$ | Data to Pad delay through the Output Buffer |
| $t_{\text {PY }}$ | Pad to Data delay through the Input Buffer with Schmitt trigger disabled |
| $t_{\text {DOUT }}$ | Data to Output Buffer delay through the I/O interface |
| $t_{\text {EOUT }}$ | Enable to Output Buffer Tristate Control delay through the I/O interface |
| $t_{\text {DIN }}$ | Input Buffer to Data delay through the I/O interface |
| $t_{\text {PYS }}$ | Pad to Data delay through the Input Buffer with Schmitt trigger enabled |
| $t_{\text {HZ }}$ | Enable to Pad delay through the Output Buffer-high to Z |
| $t_{Z H}$ | Enable to Pad delay through the Output Buffer-Z to high |
| $t_{\text {LZ }}$ | Enable to Pad delay through the Output Buffer-low to Z |
| $t_{Z L}$ | Enable to Pad delay through the Output Buffer-Z to low |
| $t_{Z H S}$ | Enable to Pad delay through the Output Buffer with delayed enable-Z to high |
| $t_{Z L S}$ | Enable to Pad delay through the Output Buffer with delayed enable-Z to low |

Table 2-77 • Summary of I/O Timing Characteristics - Software Default Settings
-2 Speed Grade, Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}$

| 1/0 Standard |  |  |  |  | $\begin{array}{r} 5 \\ \hline 0 \\ \hline \end{array}$ | А | Z | $\pm$ | $\underset{\substack{n \\ \multirow{2}{*}{\hline}\\ \hline}}{ }$ | $\begin{array}{r} 5 \\ \underset{\sim}{2} \\ \hline \end{array}$ | $\stackrel{+}{+}$ | $\underset{N}{\text { I }}$ | $\stackrel{\text { N }}{+}$ | $\underset{ \pm}{N}$ | $\underset{+N}{N}$ | $\stackrel{n}{N}$ | 苸 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.3 V LVTTL / <br> 3.3 V LVCMOS | 12 mA | High | 35 | - | 0.49 | 2.74 | 0.03 | 0.90 | 1.17 | 0.32 | 2.79 | 2.14 | 2.45 | 2.70 | 4.46 | 3.81 | ns |
| 2.5 V LVCMOS | 12 mA | High | 35 | - | 0.49 | 2.80 | 0.03 | 1.13 | 1.24 | 0.32 | 2.85 | 2.61 | 2.51 | 2.61 | 4.52 | 4.28 | ns |
| 1.8 V LVCMOS | 12 mA | High | 35 | - | 0.49 | 2.83 | 0.03 | 1.08 | 1.42 | 0.32 | 2.89 | 2.31 | 2.79 | 3.16 | 4.56 | 3.98 | ns |
| 1.5 V LVCMOS | 12 mA | High | 35 | - | 0.49 | 3.30 | 0.03 | 1.27 | 1.60 | 0.32 | 3.36 | 2.70 | 2.96 | 3.27 | 5.03 | 4.37 | ns |
| 3.3 V PCI | Per PCI spec | High | 10 | $25^{2}$ | 0.49 | 2.09 | 0.03 | 0.78 | 1.25 | 0.32 | 2.13 | 1.49 | 2.45 | 2.70 | 3.80 | 3.16 | ns |
| $3.3 \mathrm{~V} \mathrm{PCI-X}$ | Per PCI-X spec | High | 10 | $25^{2}$ | 0.49 | 2.09 | 0.03 | 0.78 | 1.25 | 0.32 | 2.13 | 1.49 | 2.45 | 2.70 | 3.80 | 3.16 | ns |
| 3.3 V GTL | 25 mA | High | 10 | 25 | 0.49 | 1.55 | 0.03 | 2.19 | - | 0.32 | 1.52 | 1.55 | - | - | 3.19 | 3.22 | ns |
| 2.5 V GTL | 25 mA | High | 10 | 25 | 0.49 | 1.59 | 0.03 | 1.83 | - | 0.32 | 1.61 | 1.59 | - | - | 3.28 | 3.26 | ns |
| 3.3 V GTL+ | 35 mA | High | 10 | 25 | 0.49 | 1.53 | 0.03 | 1.19 | - | 0.32 | 1.56 | 1.53 | - | - | 3.23 | 3.20 | ns |
| 2.5 V GTL+ | 33 mA | High | 10 | 25 | 0.49 | 1.65 | 0.03 | 1.13 | - | 0.32 | 1.68 | 1.57 | - | - | 3.35 | 3.24 | ns |
| HSTL (I) | 8 mA | High | 20 | 50 | 0.49 | 2.37 | 0.03 | 1.59 | - | 0.32 | 2.42 | 2.35 | - | - | 4.09 | 4.02 | ns |
| HSTL (II) | 15 mA | High | 20 | 25 | 0.49 | 2.26 | 0.03 | 1.59 | - | 0.32 | 2.30 | 2.03 | - | - | 3.97 | 3.70 | ns |
| SSTL2 (I) | 15 mA | High | 30 | 50 | 0.49 | 1.59 | 0.03 | 1.00 | - | 0.32 | 1.62 | 1.38 | - | - | 3.29 | 3.05 | ns |
| SSTL2 (II) | 18 mA | High | 30 | 25 | 0.49 | 1.62 | 0.03 | 1.00 | - | 0.32 | 1.65 | 1.32 | - | - | 3.32 | 2.99 | ns |
| SSTL3 (I) | 14 mA | High | 30 | 50 | 0.49 | 1.72 | 0.03 | 0.93 | - | 0.32 | 1.75 | 1.37 | - | - | 3.42 | 3.04 | ns |
| SSTL3 (II) | 21 mA | High | 30 | 25 | 0.49 | 1.54 | 0.03 | 0.93 | - | 0.32 | 1.57 | 1.25 | - | - | 3.24 | 2.92 | ns |
| $\begin{array}{\|l\|} \hline \text { LVDS, } \quad \text { BLVDS, } \\ \hline \text { M-LVDS } \end{array}$ | 24 mA | High | - | - | 0.49 | 1.57 | 0.03 | 1.51 | - | - | - | - | - | - | - | - | ns |
| LVPECL | 24 mA | High | - | - | 0.49 | 1.60 | 0.03 | 1.31 | - | - | - | - | - | - | - | - | ns |

## Notes:

1. For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-99 on page 2-143 for connectivity. This resistor is not required during normal operation.

## Detailed I/O DC Characteristics

Table 2-78 • Input Capacitance

| Symbol | Definition | Conditions | Min. | Max. | Units |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{C}_{\mathbb{I N}}$ | Input capacitance | $\mathrm{V}_{\mathbb{I N}}=0, \mathrm{f}=1.0 \mathrm{MHz}$ |  | 8 | pF |
| $\mathrm{C}_{\mathbb{I N C L K}}$ | Input capacitance on the clock pin | $\mathrm{V}_{\mathbb{I N}}=0, \mathrm{f}=1.0 \mathrm{MHz}$ |  | 8 | pF |

Fusion Family of Mixed-Signal Flash FPGAs

Table 2-79 • I/O Output Buffer Maximum Resistances ${ }^{1}$

| Standard | Drive Strength | R PULL-DOWN | RPULL-UP |
| :---: | :---: | :---: | :---: |
|  |  | (Ohms) ${ }^{\mathbf{2}}$ | (Ohms) $^{3}$ |
| 3.3 V LVTTL / 3.3 V LVCMOS | 4 mA | 100 | 300 |
|  | 8 mA | 50 | 150 |
|  | 12 mA | 25 | 75 |
|  | 16 mA | 17 | 50 |
|  | 24 mA | 11 | 33 |
| 2.5 V LVCMOS | 4 mA | 100 | 200 |
|  | 8 mA | 50 | 100 |
|  | 12 mA | 25 | 50 |
|  | 16 mA | 20 | 40 |
|  | 24 mA | 11 | 22 |
| 1.8 V LVCMOS | 2 mA | 200 | 225 |
|  | 4 mA | 100 | 112 |
|  | 6 mA | 50 | 56 |
|  | 8 mA | 50 | 56 |
|  | 12 mA | 20 | 22 |
|  | 16 mA | 20 | 22 |
| 1.5 V LVCMOS | 2 mA | 200 | 224 |
|  | 4 mA | 100 | 112 |
|  | 6 mA | 67 | 75 |
|  | 8 mA | 33 | 37 |
|  | 12 mA | 33 | 37 |
| $3.3 \mathrm{~V} \mathrm{PCI/PCI-X}$ | Per PCI/PCI-X specification | 25 | 75 |
| 3.3 V GTL | 25 mA | 11 | - |
| 2.5 V GTL | 25 mA | 14 | - |
| $3.3 \mathrm{~V} \mathrm{GTL}+$ | 35 mA | 12 | - |
| $2.5 \mathrm{~V} \mathrm{GTL}+$ | 33 mA | 15 | - |
| HSTL (I) | 8 mA | 50 | 50 |
| HSTL (II) | 15 mA | 25 | 25 |
| SSTL2 (I) | 15 mA | 27 | 31 |
| SSTL2 (II) | 18 mA | 13 | 15 |
| SSTL3 (I) | 14 mA | 44 | 69 |
| SSTL3 (II) | 21 mA | 18 | 32 |

## Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on $V_{C C l}$, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at http://www.actel.com/techdocs/models/ibis.html.
2. $R_{\text {(PULL-DOWN-MAX })}=\left(V_{\text {OLsped }}\right) / I_{O L \text { Lpec }}$
3. $R_{(\text {PULL-UP-MAX })}=\left(V_{\text {CCImax }}-V_{\text {OHsped }}\right) / I_{\text {OHspec }}$
$\qquad$

Table 2-80 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

| $\mathbf{V}_{\mathbf{C C I}}$ | R(WEAK PULL-UP) <br> (Ohms) |  | $\mathbf{R}_{\text {(WEAK PULL-DOWN) }}$ <br> (Ohms) |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Min. | Max. | Min. | Max. |
|  | 10 k | 45 k | 10 k | 45 k |
| 1.8 V | 11 k | 55 k | 12 k | 74 k |
| 1.5 V | 18 k | 70 k | 17 k | 110 k |

Notes:

1. $R_{\text {(WEAK PULL-DOWN-MAX })}=\left(V_{\text {OLspeC }}\right) / I_{\text {WEAK PULL-DOWN-MIN }}$
2. $R_{\text {(WEAK PULL-UP-MAX })}=\left(V_{\text {CCImax }}-V_{\text {OHsped }}\right) / I_{\text {WEAK PULL-UP-MIN }}$

Table 2-81 • I/O Short Currents $\mathbf{I O S H} \mathbf{I}_{\mathbf{O S L}}$

|  | Drive Strength | losh (mA)* | IOSL (mA)* |
| :---: | :---: | :---: | :---: |
| 3.3 V LVTTL / 3.3 V LVCMOS | 4 mA | 25 | 27 |
|  | 8 mA | 51 | 54 |
|  | 12 mA | 103 | 109 |
|  | 16 mA | 132 | 127 |
|  | 24 mA | 268 | 181 |
| 2.5 V LVCMOS | 4 mA | 16 | 18 |
|  | 8 mA | 32 | 37 |
|  | 12 mA | 65 | 74 |
|  | 16 mA | 83 | 87 |
|  | 24 mA | 169 | 124 |
| 1.8 V LVCMOS | 2 mA | 9 | 11 |
|  | 4 mA | 17 | 22 |
|  | 6 mA | 35 | 44 |
|  | 8 mA | 45 | 51 |
|  | 12 mA | 91 | 74 |
|  | 16 mA | 91 | 74 |
| 1.5 V LVCMOS | 2 mA | 13 | 16 |
|  | 4 mA | 25 | 33 |
|  | 6 mA | 32 | 39 |
|  | 8 mA | 66 | 55 |
|  | 12 mA | 66 | 55 |

Note: ${ }^{*} T_{J}=100^{\circ} \mathrm{C}$

The length of time an I/O can withstand $\mathrm{I}_{\mathrm{OSH}} / \mathrm{I}_{\mathrm{OSL}}$ events depends on the junction temperature. The reliability data below is based on a $3.3 \mathrm{~V}, 36 \mathrm{~mA} \mathrm{I/O}$ setting, which is the worst case for this type of analysis.
For example, at $110^{\circ} \mathrm{C}$, the short current condition would have to be sustained for more than three months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-82 • Short Current Event Duration Before Failure

| Temperature | Time Before Failure |
| :--- | :---: |
| $-40^{\circ} \mathrm{C}$ | $>20$ years |
| $0^{\circ} \mathrm{C}$ | $>20$ years |
| $25^{\circ} \mathrm{C}$ | $>20$ years |
| $70^{\circ} \mathrm{C}$ | 5 years |
| $85^{\circ} \mathrm{C}$ | 2 years |
| $100^{\circ} \mathrm{C}$ | 6 months |
| $110^{\circ} \mathrm{C}$ | 3 months |

Table 2-83 • Schmitt Trigger Input Hysteresis Hysteresis Voltage Value (Typ) for Schmitt Mode Input Buffers

| Input Buffer Configuration | Hysteresis Value (Typ) |
| :--- | :---: |
| 3.3 V LVTTL/LVCMOS / PCI / PCI-X (Schmitt trigger mode) | 240 mV |
| 2.5 V LVCMOS (Schmitt trigger mode) | 140 mV |
| 1.8 V LVCMOS (Schmitt trigger mode) | 80 mV |
| 1.5 V LVCMOS (Schmitt trigger mode) | 60 mV |

Table 2-84 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

| Input Buffer | Input Rise/Fall Time (Min.) | Input Rise/Fall Time (Max.) | Reliability |
| :--- | :---: | :---: | :---: |
| LVTTL/LVCMOS (Schmitt trigger disabled) | No requirement | $10 \mathrm{~ns}^{*}$ | 20 years $\left(110^{\circ} \mathrm{C}\right)$ |
| LVTTL/LVCMOS (Schmitt trigger enabled) | No requirement | No requirement, but input noise voltage <br> cannot exceed Schmitt hysteresis | 20 years $\left(110^{\circ} \mathrm{C}\right)$ |
| HSTL/SSTL/GTL | No requirement | $10 \mathrm{~ns} *$ | 10 years $\left(100^{\circ} \mathrm{C}\right)$ |
| LVDS/BLVDS/M-LVDS/LVPECL | No requirement | $10 \mathrm{ns*}$ | 10 years $\left(100^{\circ} \mathrm{C}\right)$ |

Note: *The Maximum Input rise/fall time is related only to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers, when Schmitt trigger is disabled, can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Actel recommends signal integrity evaluation/ characterization of the system to ensure that there is no excessive noise coupling into input signals.
$\qquad$

## Single-Ended I/O Characteristics

### 3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor-Transistor Logic is a general purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS standard is supported as part of the 3.3 V LVTTL support.

Table 2-85 • Minimum and Maximum DC Input and Output Levels

| 3.3 V LVTTL / <br> 3.3 V LVCMOS | $\mathbf{V}_{\text {IL }}$ |  | $\mathbf{V}_{\mathbf{I H}}$ |  | $\mathrm{V}_{\mathbf{O L}}$ | $\mathrm{V}_{\mathbf{O H}}$ | $\mathbf{I O L}$ | $\mathbf{I O H}$ | Iost | IOSH | IIL | $\mathbf{I I H}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive Strength | Min, V | Max, V | Min, V | Max, V | Max, V | Min, V | mA | mA | Max, mA ${ }^{1}$ | Max, mA ${ }^{1}$ | $\mu \mathrm{A}^{2}$ | $\mu A^{2}$ |
| 4 mA | -0.3 | 0.8 | 2 | 3.6 | 0.4 | 2.4 | 4 | 4 | 27 | 25 | 10 | 10 |
| 8 mA | -0.3 | 0.8 | 2 | 3.6 | 0.4 | 2.4 | 8 | 8 | 54 | 51 | 10 | 10 |
| 12 mA | -0.3 | 0.8 | 2 | 3.6 | 0.4 | 2.4 | 12 | 12 | 109 | 103 | 10 | 10 |
| 16 mA | -0.3 | 0.8 | 2 | 3.6 | 0.4 | 2.4 | 16 | 16 | 127 | 132 | 10 | 10 |
| 24 mA | -0.3 | 0.8 | 2 | 3.6 | 0.4 | 2.4 | 24 | 24 | 181 | 268 | 10 | 10 |

## Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.
3. Software default selection highlighted in gray.


Figure 2-95 • AC Loading
Table 2-86 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | $\mathbf{V}_{\text {REF (Typ) (V) }}$ | C LOAD $^{(\mathbf{p F})}$ |
| :--- | :---: | :---: | :---: | :---: |
| 0 | 3.3 | 1.4 | - | 35 |

Note: *Measuring point $=V_{\text {trip. }}$. See Table 2-75 on page 2-128 for a complete table of trip points.

## Fusion Family of Mixed-Signal Flash FPGAs

## Timing Characteristics

Table 2-87 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}$

| Drive Strength (mA) | Speed <br> Grade | $\mathbf{t}_{\text {DOUT }}$ | $\mathbf{t}_{\mathbf{D P}}$ | $t_{\text {DIN }}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\text {PYS }}$ | $\mathrm{t}_{\text {EOUT }}$ | $\mathbf{t}_{\mathbf{z L}}$ | $\mathbf{t}_{\mathbf{z H}}$ | $\mathbf{t}_{\text {Lz }}$ | $\mathbf{t}_{\mathbf{H Z}}$ | $\mathbf{t}_{\mathbf{z L S}}$ | $\mathbf{t}_{\text {zHS }}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 mA | Std. | 0.66 | 11.01 | 0.04 | 1.20 | 1.57 | 0.43 | 11.21 | 9.05 | 2.69 | 2.44 | 13.45 | 11.29 | ns |
|  | -1 | 0.56 | 9.36 | 0.04 | 1.02 | 1.33 | 0.36 | 9.54 | 7.70 | 2.29 | 2.08 | 11.44 | 9.60 | ns |
|  | -2 | 0.49 | 8.22 | 0.03 | 0.90 | 1.17 | 0.32 | 8.37 | 6.76 | 2.01 | 1.82 | 10.04 | 8.43 | ns |
| 8 mA | Std. | 0.66 | 7.86 | 0.04 | 1.20 | 1.57 | 0.43 | 8.01 | 6.44 | 3.04 | 3.06 | 10.24 | 8.68 | ns |
|  | -1 | 0.56 | 6.69 | 0.04 | 1.02 | 1.33 | 0.36 | 6.81 | 5.48 | 2.58 | 2.61 | 8.71 | 7.38 | ns |
|  | -2 | 0.49 | 5.87 | 0.03 | 0.90 | 1.17 | 0.32 | 5.98 | 4.81 | 2.27 | 2.29 | 7.65 | 6.48 | ns |
| 12 mA | Std. | 0.66 | 6.03 | 0.04 | 1.20 | 1.57 | 0.43 | 6.14 | 5.02 | 3.28 | 3.47 | 8.37 | 7.26 | ns |
|  | -1 | 0.56 | 5.13 | 0.04 | 1.02 | 1.33 | 0.36 | 5.22 | 4.27 | 2.79 | 2.95 | 7.12 | 6.17 | ns |
|  | -2 | 0.49 | 4.50 | 0.03 | 0.90 | 1.17 | 0.32 | 4.58 | 3.75 | 2.45 | 2.59 | 6.25 | 5.42 | ns |
| 16 mA | Std. | 0.66 | 5.62 | 0.04 | 1.20 | 1.57 | 0.43 | 5.72 | 4.72 | 3.32 | 3.58 | 7.96 | 6.96 | ns |
|  | -1 | 0.56 | 4.78 | 0.04 | 1.02 | 1.33 | 0.36 | 4.87 | 4.02 | 2.83 | 3.04 | 6.77 | 5.92 | ns |
|  | -2 | 0.49 | 4.20 | 0.03 | 0.90 | 1.17 | 0.32 | 4.27 | 3.53 | 2.48 | 2.67 | 5.94 | 5.20 | ns |
| 24 mA | Std. | 0.66 | 5.24 | 0.04 | 1.20 | 1.57 | 0.43 | 5.34 | 4.69 | 3.39 | 3.96 | 7.58 | 6.93 | ns |
|  | -1 | 0.56 | 4.46 | 0.04 | 1.02 | 1.33 | 0.36 | 4.54 | 3.99 | 2.88 | 3.37 | 6.44 | 5.89 | ns |
|  | -2 | 0.49 | 3.92 | 0.03 | 0.90 | 1.17 | 0.32 | 3.99 | 3.50 | 2.53 | 2.96 | 5.66 | 5.17 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.
Table 2-88 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=3.0$

| Drive Strength (mA) | Speed Grade | $t_{\text {DOUT }}$ | $\mathbf{t}_{\text {DP }}$ | $t_{\text {DIN }}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\text {PYS }}$ | $t_{\text {EOUT }}$ | $\mathrm{t}_{\mathrm{zL}}$ | $\mathbf{t z H}_{\text {IH }}$ | $t_{\text {Lz }}$ | $\mathbf{t}_{\mathbf{H Z}}$ | $\mathrm{t}_{\mathrm{zLS}}$ | $t_{\text {zHS }}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 mA | Std. | 0.66 | 7.88 | 0.04 | 1.20 | 1.57 | 0.43 | 8.03 | 6.70 | 2.69 | 2.59 | 10.26 | 8.94 | ns |
|  | -1 | 0.56 | 6.71 | 0.04 | 1.02 | 1.33 | 0.36 | 6.83 | 5.70 | 2.29 | 2.20 | 8.73 | 7.60 | ns |
|  | -2 | 0.49 | 5.89 | 0.03 | 0.90 | 1.17 | 0.32 | 6.00 | 5.01 | 2.01 | 1.93 | 7.67 | 6.67 | ns |
| 8 mA | Std. | 0.66 | 5.08 | 0.04 | 1.20 | 1.57 | 0.43 | 5.17 | 4.14 | 3.05 | 3.21 | 7.41 | 6.38 | ns |
|  | -1 | 0.56 | 4.32 | 0.04 | 1.02 | 1.33 | 0.36 | 4.40 | 3.52 | 2.59 | 2.73 | 6.30 | 5.43 | ns |
|  | -2 | 0.49 | 3.79 | 0.03 | 0.90 | 1.17 | 0.32 | 3.86 | 3.09 | 2.28 | 2.40 | 5.53 | 4.76 | ns |
| 12 mA | Std. | 0.66 | 3.67 | 0.04 | 1.20 | 1.57 | 0.43 | 3.74 | 2.87 | 3.28 | 3.61 | 5.97 | 5.11 | ns |
|  | -1 | 0.56 | 3.12 | 0.04 | 1.02 | 1.33 | 0.36 | 3.18 | 2.44 | 2.79 | 3.07 | 5.08 | 4.34 | ns |
|  | -2 | 0.49 | 2.74 | 0.03 | 0.90 | 1.17 | 0.32 | 2.79 | 2.14 | 2.45 | 2.70 | 4.46 | 3.81 | ns |
| 16 mA | Std. | 0.66 | 3.46 | 0.04 | 1.20 | 1.57 | 0.43 | 3.53 | 2.61 | 3.33 | 3.72 | 5.76 | 4.84 | ns |
|  | -1 | 0.56 | 2.95 | 0.04 | 1.02 | 1.33 | 0.36 | 3.00 | 2.22 | 2.83 | 3.17 | 4.90 | 4.12 | ns |
|  | -2 | 0.49 | 2.59 | 0.03 | 0.90 | 1.17 | 0.32 | 2.63 | 1.95 | 2.49 | 2.78 | 4.30 | 3.62 | ns |
| 24 mA | Std. | 0.66 | 3.21 | 0.04 | 1.20 | 1.57 | 0.43 | 3.27 | 2.16 | 3.39 | 4.13 | 5.50 | 4.39 | ns |
|  | -1 | 0.56 | 2.73 | 0.04 | 1.02 | 1.33 | 0.36 | 2.78 | 1.83 | 2.88 | 3.51 | 4.68 | 3.74 | ns |
|  | -2 | 0.49 | 2.39 | 0.03 | 0.90 | 1.17 | 0.32 | 2.44 | 1.61 | 2.53 | 3.08 | 4.11 | 3.28 | ns |

## Notes:

1. Software default selection highlighted in gray.
2. For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.
$\qquad$

### 2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general purpose 2.5 V applications. It uses a 5 -V-tolerant input buffer and push-pull output buffer.

Table 2-89 • Minimum and Maximum DC Input and Output Levels

| 2.5 V <br> LVCMOS | $\mathbf{V I L}_{\text {IL }}$ |  | $\mathbf{V}_{\mathbf{I H}}$ |  | $\mathrm{V}_{\mathbf{O L}}$ | $\mathrm{V}_{\mathbf{O H}}$ | IoL | $\mathbf{I O H}^{\prime}$ | Iost | IOSH | IIL | $\mathbf{I I H}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive Strength | Min, V | Max, V | Min, V | Max, V | Max, V | Min, V | mA | mA | Max, mA ${ }^{1}$ | Max, mA ${ }^{1}$ | $\mu A^{2}$ | $\mu A^{2}$ |
| 4 mA | -0.3 | 0.7 | 1.7 | 3.6 | 0.7 | 1.7 | 4 | 4 | 18 | 16 | 10 | 10 |
| 8 mA | -0.3 | 0.7 | 1.7 | 3.6 | 0.7 | 1.7 | 8 | 8 | 37 | 32 | 10 | 10 |
| 12 mA | -0.3 | 0.7 | 1.7 | 3.6 | 0.7 | 1.7 | 12 | 12 | 74 | 65 | 10 | 10 |
| 16 mA | -0.3 | 0.7 | 1.7 | 3.6 | 0.7 | 1.7 | 16 | 16 | 87 | 83 | 10 | 10 |
| 24 mA | -0.3 | 0.7 | 1.7 | 3.6 | 0.7 | 1.7 | 24 | 24 | 124 | 169 | 10 | 10 |

## Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.
3. Software default selection highlighted in gray.


Figure 2-96 • AC Loading
Table 2-90 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | $\mathrm{V}_{\text {REF }}$ (Typ) (V) | $\mathrm{C}_{\text {LOAD }}$ (pF) |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 2.5 | 1.2 | - | 35 |

Note: *Measuring point $=V_{\text {trip. }}$. See Table 2-75 on page 2-128 for a complete table of trip points.

## Fusion Family of Mixed-Signal Flash FPGAs

## Timing Characteristics

Table 2-91 • 2.5 V LVCMOS Low Slew
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=2.3 \mathrm{~V}$

| Drive Strength (mA) | Speed Grade | $\mathbf{t}_{\text {DOUT }}$ | $\mathbf{t}_{\mathbf{D P}}$ | $t_{\text {DIN }}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathrm{t}_{\text {PYS }}$ | $\mathrm{t}_{\text {EOUT }}$ | $\mathbf{t}_{\mathbf{z L}}$ | $\mathbf{t}_{\mathbf{z H}}$ | $\mathbf{t}_{\text {Lz }}$ | $\mathbf{t}_{\mathbf{H Z}}$ | $\mathbf{t}_{\text {zLS }}$ | $\mathrm{t}_{\text {zHS }}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 mA | Std. | 0.66 | 12.00 | 0.04 | 1.51 | 1.66 | 0.43 | 12.23 | 11.61 | 2.72 | 2.20 | 14.46 | 13.85 | ns |
|  | -1 | 0.56 | 10.21 | 0.04 | 1.29 | 1.41 | 0.36 | 10.40 | 9.88 | 2.31 | 1.87 | 12.30 | 11.78 | ns |
|  | -2 | 0.49 | 8.96 | 0.03 | 1.13 | 1.24 | 0.32 | 9.13 | 8.67 | 2.03 | 1.64 | 10.80 | 10.34 | ns |
| 8 mA | Std. | 0.66 | 8.73 | 0.04 | 1.51 | 1.66 | 0.43 | 8.89 | 8.01 | 3.10 | 2.93 | 11.13 | 10.25 | ns |
|  | -1 | 0.56 | 7.43 | 0.04 | 1.29 | 1.41 | 0.36 | 7.57 | 6.82 | 2.64 | 2.49 | 9.47 | 8.72 | ns |
|  | -2 | 0.49 | 6.52 | 0.03 | 1.13 | 1.24 | 0.32 | 6.64 | 5.98 | 2.32 | 2.19 | 8.31 | 7.65 | ns |
| 12 mA | Std. | 0.66 | 6.77 | 0.04 | 1.51 | 1.66 | 0.43 | 6.90 | 6.11 | 3.37 | 3.39 | 9.14 | 8.34 | ns |
|  | -1 | 0.56 | 5.76 | 0.04 | 1.29 | 1.41 | 0.36 | 5.87 | 5.20 | 2.86 | 2.89 | 7.77 | 7.10 | ns |
|  | -2 | 0.49 | 5.06 | 0.03 | 1.13 | 1.24 | 0.32 | 5.15 | 4.56 | 2.51 | 2.53 | 6.82 | 6.23 | ns |
| 16 mA | Std. | 0.66 | 6.31 | 0.04 | 1.51 | 1.66 | 0.43 | 6.42 | 5.73 | 3.42 | 3.52 | 8.66 | 7.96 | ns |
|  | -1 | 0.56 | 5.37 | 0.04 | 1.29 | 1.41 | 0.36 | 5.46 | 4.87 | 2.91 | 3.00 | 7.37 | 6.77 | ns |
|  | -2 | 0.49 | 4.71 | 0.03 | 1.13 | 1.24 | 0.32 | 4.80 | 4.28 | 2.56 | 2.63 | 6.47 | 5.95 | ns |
| 24 mA | Std. | 0.66 | 5.93 | 0.04 | 1.51 | 1.66 | 0.43 | 6.04 | 5.70 | 3.49 | 4.00 | 8.28 | 7.94 | ns |
|  | -1 | 0.56 | 5.05 | 0.04 | 1.29 | 1.41 | 0.36 | 5.14 | 4.85 | 2.97 | 3.40 | 7.04 | 6.75 | ns |
|  | -2 | 0.49 | 4.43 | 0.03 | 1.13 | 1.24 | 0.32 | 4.51 | 4.26 | 2.61 | 2.99 | 6.18 | 5.93 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.
Table 2-92 • 2.5 V LVCMOS High Slew
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=2.3 \mathrm{~V}$

| Drive Strength (mA) | Speed Grade | $\mathbf{t}_{\text {DOUT }}$ | $\mathbf{t}_{\text {DP }}$ | $\mathbf{t}_{\text {DIN }}$ | $\mathbf{t}_{\text {PY }}$ | $\mathbf{t}_{\text {PYS }}$ | $\mathrm{t}_{\text {EOUT }}$ | $\mathrm{t}_{\mathrm{zL}}$ | $\mathbf{t}_{\mathbf{Z H}}$ | $\mathrm{t}_{\text {LZ }}$ | $\mathbf{t}_{\mathrm{HZ}}$ | $\mathbf{t z u s}$ | $\mathrm{t}_{\text {zHS }}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 mA | Std. | 0.66 | 8.82 | 0.04 | 1.51 | 1.66 | 0.43 | 8.13 | 8.82 | 2.72 | 2.29 | 10.37 | 11.05 | ns |
|  | -1 | 0.56 | 7.50 | 0.04 | 1.29 | 1.41 | 0.36 | 6.92 | 7.50 | 2.31 | 1.95 | 8.82 | 9.40 | ns |
|  | -2 | 0.49 | 6.58 | 0.03 | 1.13 | 1.24 | 0.32 | 6.07 | 6.58 | 2.03 | 1.71 | 7.74 | 8.25 | ns |
| 8 mA | Std. | 0.66 | 5.27 | 0.04 | 1.51 | 1.66 | 0.43 | 5.27 | 5.27 | 3.10 | 3.03 | 7.50 | 7.51 | ns |
|  | -1 | 0.56 | 4.48 | 0.04 | 1.29 | 1.41 | 0.36 | 4.48 | 4.48 | 2.64 | 2.58 | 6.38 | 6.38 | ns |
|  | -2 | 0.49 | 3.94 | 0.03 | 1.13 | 1.24 | 0.32 | 3.93 | 3.94 | 2.32 | 2.26 | 5.60 | 5.61 | ns |
| 12 mA | Std. | 0.66 | 3.74 | 0.04 | 1.51 | 1.66 | 0.43 | 3.81 | 3.49 | 3.37 | 3.49 | 6.05 | 5.73 | ns |
|  | -1 | 0.56 | 3.18 | 0.04 | 1.29 | 1.41 | 0.36 | 3.24 | 2.97 | 2.86 | 2.97 | 5.15 | 4.87 | ns |
|  | -2 | 0.49 | 2.80 | 0.03 | 1.13 | 1.24 | 0.32 | 2.85 | 2.61 | 2.51 | 2.61 | 4.52 | 4.28 | ns |
| 16 mA | Std. | 0.66 | 3.53 | 0.04 | 1.51 | 1.66 | 0.43 | 3.59 | 3.12 | 3.42 | 3.62 | 5.83 | 5.35 | ns |
|  | -1 | 0.56 | 3.00 | 0.04 | 1.29 | 1.41 | 0.36 | 3.06 | 2.65 | 2.91 | 3.08 | 4.96 | 4.55 | ns |
|  | -2 | 0.49 | 2.63 | 0.03 | 1.13 | 1.24 | 0.32 | 2.68 | 2.33 | 2.56 | 2.71 | 4.35 | 4.00 | ns |
| 24 mA | Std. | 0.66 | 3.26 | 0.04 | 1.51 | 1.66 | 0.43 | 3.32 | 2.48 | 3.49 | 4.11 | 5.56 | 4.72 | ns |
|  | -1 | 0.56 | 2.77 | 0.04 | 1.29 | 1.41 | 0.36 | 2.83 | 2.11 | 2.97 | 3.49 | 4.73 | 4.01 | ns |
|  | -2 | 0.49 | 2.44 | 0.03 | 1.13 | 1.24 | 0.32 | 2.48 | 1.85 | 2.61 | 3.07 | 4.15 | 3.52 | ns |

## Notes:

1. Software default selection highlighted in gray.
2. For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.
$\qquad$

### 1.8 V LVCMOS

Low-Voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general purpose 1.8 V applications. It uses 1.8 V input buffer and push-pull output buffer.

Table 2-93 • Minimum and Maximum DC Input and Output Levels

| 1.8 V LVCMOS | $\mathbf{V}_{\text {IL }}$ |  | $\mathbf{V}_{\mathbf{I H}}$ |  | $\mathbf{V}_{\mathbf{O L}}$ | $\mathrm{V}_{\mathrm{OH}}$ | $\mathrm{IOL}^{\text {L }}$ | $\mathrm{I}_{\mathrm{OH}}$ | IosL | IOSH | $I_{\text {IL }}$ | $\mathbf{I}_{\mathbf{I H}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive Strength | Min, V | Max, V | Min, V | Max, V | Max, V | Min, V | mA | mA | Max, mA ${ }^{1}$ | Max, mA ${ }^{1}$ | $\mu A^{2}$ | $\mu A^{2}$ |
| 2 mA | -0.3 | 0.35 * V CCI | 0.65 * V CCI | 3.6 | 0.45 | $\mathrm{V}_{\mathrm{CCI}}-0.45$ | 2 | 2 | 11 | 9 | 10 | 10 |
| 4 mA | -0.3 | 0.35 * V CCI | 0.65 * V CCI | 3.6 | 0.45 | $\mathrm{V}_{\text {CCI }}-0.45$ | 4 | 4 | 22 | 17 | 10 | 10 |
| 6 mA | -0.3 | 0.35 * V CCI | 0.65 * V CCI | 3.6 | 0.45 | $\mathrm{V}_{\mathrm{CCI}}-0.45$ | 6 | 6 | 44 | 35 | 10 | 10 |
| 8 mA | -0.3 | 0.35 * CCOI | 0.65 * V CCI | 3.6 | 0.45 | $\mathrm{V}_{\mathrm{CCI}}-0.45$ | 8 | 8 | 51 | 45 | 10 | 10 |
| 12 mA | -0.3 | 0.35 * V CCI | 0.65 * V CCI | 3.6 | 0.45 | $\mathrm{V}_{\text {CCI }}-0.45$ | 12 | 12 | 74 | 91 | 10 | 10 |
| 16 mA | -0.3 | 0.35 * V CCI | 0.65 * V ${ }_{\text {CCI }}$ | 3.6 | 0.45 | $\mathrm{V}_{\mathrm{CCI}}-0.45$ | 16 | 16 | 74 | 91 | 10 | 10 |

## Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.
3. Software default selection highlighted in gray.


Figure 2-97 • AC Loading
Table 2-94 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | $\mathbf{V}_{\text {REF }}$ (Typ) (V) | C $_{\text {LOAD }}$ (pF) |
| :--- | :---: | :---: | :---: | :---: |
| 0 | 1.8 | 0.9 | - | 35 |

Note: *Measuring point $=V_{\text {trip. }}$. See Table 2-75 on page 2-128 for a complete table of trip points.

## Fusion Family of Mixed-Signal Flash FPGAs

## Timing Characteristics

Table 2-95 • 1.8 V LVCMOS Low Slew
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=1.7 \mathrm{~V}$

| Drive Strength (mA) | Speed Grade | $\mathbf{t}_{\text {DOUT }}$ | $\mathbf{t}_{\text {DP }}$ | $t_{\text {din }}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\text {PYS }}$ | $\mathrm{t}_{\text {EOUT }}$ | $\mathrm{t}_{\mathrm{zL}}$ | $\mathbf{t}_{\mathbf{z H}}$ | $\mathbf{t}_{\text {Lz }}$ | $\mathbf{t}_{\mathrm{HZ}}$ | $\mathbf{t}_{\mathbf{z L S}}$ | $\mathbf{t}_{\text {zHS }}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 mA | Std. | 0.66 | 15.84 | 0.04 | 1.45 | 1.91 | 0.43 | 15.65 | 15.84 | 2.78 | 1.58 | 17.89 | 18.07 | ns |
|  | -1 | 0.56 | 13.47 | 0.04 | 1.23 | 1.62 | 0.36 | 13.31 | 13.47 | 2.37 | 1.35 | 15.22 | 15.37 | ns |
|  | -2 | 0.49 | 11.83 | 0.03 | 1.08 | 1.42 | 0.32 | 11.69 | 11.83 | 2.08 | 1.18 | 13.36 | 13.50 | ns |
| 4 mA | Std. | 0.66 | 11.39 | 0.04 | 1.45 | 1.91 | 0.43 | 11.60 | 10.76 | 3.26 | 2.77 | 13.84 | 12.99 | ns |
|  | -1 | 0.56 | 9.69 | 0.04 | 1.23 | 1.62 | 0.36 | 9.87 | 9.15 | 2.77 | 2.36 | 11.77 | 11.05 | ns |
|  | -2 | 0.49 | 8.51 | 0.03 | 1.08 | 1.42 | 0.32 | 8.66 | 8.03 | 2.43 | 2.07 | 10.33 | 9.70 | ns |
| 6 mA | Std. | 0.66 | 8.97 | 0.04 | 1.45 | 1.91 | 0.43 | 9.14 | 8.10 | 3.57 | 3.36 | 11.37 | 10.33 | ns |
|  | -1 | 0.56 | 7.63 | 0.04 | 1.23 | 1.62 | 0.36 | 7.77 | 6.89 | 3.04 | 2.86 | 9.67 | 8.79 | ns |
|  | -2 | 0.49 | 6.70 | 0.03 | 1.08 | 1.42 | 0.32 | 6.82 | 6.05 | 2.66 | 2.51 | 8.49 | 7.72 | ns |
| 8 mA | Std. | 0.66 | 8.35 | 0.04 | 1.45 | 1.91 | 0.43 | 8.50 | 7.59 | 3.64 | 3.52 | 10.74 | 9.82 | ns |
|  | -1 | 0.56 | 7.10 | 0.04 | 1.23 | 1.62 | 0.36 | 7.23 | 6.45 | 3.10 | 3.00 | 9.14 | 8.35 | ns |
|  | -2 | 0.49 | 6.24 | 0.03 | 1.08 | 1.42 | 0.32 | 6.35 | 5.66 | 2.72 | 2.63 | 8.02 | 7.33 | ns |
| 12 mA | Std. | 0.66 | 7.94 | 0.04 | 1.45 | 1.91 | 0.43 | 8.09 | 7.56 | 3.74 | 4.11 | 10.32 | 9.80 | ns |
|  | -1 | 0.56 | 6.75 | 0.04 | 1.23 | 1.62 | 0.36 | 6.88 | 6.43 | 3.18 | 3.49 | 8.78 | 8.33 | ns |
|  | -2 | 0.49 | 5.93 | 0.03 | 1.08 | 1.42 | 0.32 | 6.04 | 5.65 | 2.79 | 3.07 | 7.71 | 7.32 | ns |
| 16 mA | Std. | 0.66 | 7.94 | 0.04 | 1.45 | 1.91 | 0.43 | 8.09 | 7.56 | 3.74 | 4.11 | 10.32 | 9.80 | ns |
|  | -1 | 0.56 | 6.75 | 0.04 | 1.23 | 1.62 | 0.36 | 6.88 | 6.43 | 3.18 | 3.49 | 8.78 | 8.33 | ns |
|  | -2 | 0.49 | 5.93 | 0.03 | 1.08 | 1.42 | 0.32 | 6.04 | 5.65 | 2.79 | 3.07 | 7.71 | 7.32 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.
$\qquad$
Fusion Family of Mixed-Signal Flash FPGAs

Table 2-96 • 1.8 V LVCMOS High Slew
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=1.7 \mathrm{~V}$

| Drive Strength (mA) | Speed Grade | $t_{\text {dout }}$ | $\mathbf{t}_{\text {DP }}$ | $\mathbf{t}_{\text {DIN }}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\text {PYS }}$ | $\mathrm{t}_{\text {EOUT }}$ | $\mathbf{t}_{\mathbf{z L}}$ | $\mathbf{t}_{\mathbf{z H}}$ | $\mathbf{t}_{\text {Lz }}$ | $\mathbf{t}_{\mathrm{HZ}}$ | $\mathbf{t z u s}^{\text {z }}$ | $\mathrm{t}_{\text {ZHS }}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 mA | Std. | 0.66 | 12.10 | 0.04 | 1.45 | 1.91 | 0.43 | 9.59 | 12.10 | 2.78 | 1.64 | 11.83 | 14.34 | ns |
|  | -1 | 0.56 | 10.30 | 0.04 | 1.23 | 1.62 | 0.36 | 8.16 | 10.30 | 2.37 | 1.39 | 10.06 | 12.20 | ns |
|  | -2 | 0.49 | 9.04 | 0.03 | 1.08 | 1.42 | 0.32 | 7.16 | 9.04 | 2.08 | 1.22 | 8.83 | 10.71 | ns |
| 4 mA | Std. | 0.66 | 7.05 | 0.04 | 1.45 | 1.91 | 0.43 | 6.20 | 7.05 | 3.25 | 2.86 | 8.44 | 9.29 | ns |
|  | -1 | 0.56 | 6.00 | 0.04 | 1.23 | 1.62 | 0.36 | 5.28 | 6.00 | 2.76 | 2.44 | 7.18 | 7.90 | ns |
|  | -2 | 0.49 | 5.27 | 0.03 | 1.08 | 1.42 | 0.32 | 4.63 | 5.27 | 2.43 | 2.14 | 6.30 | 6.94 | ns |
| 6 mA | Std. | 0.66 | 4.52 | 0.04 | 1.45 | 1.91 | 0.43 | 4.47 | 4.52 | 3.57 | 3.47 | 6.70 | 6.76 | ns |
|  | -1 | 0.56 | 3.85 | 0.04 | 1.23 | 1.62 | 0.36 | 3.80 | 3.85 | 3.04 | 2.95 | 5.70 | 5.75 | ns |
|  | -2 | 0.49 | 3.38 | 0.03 | 1.08 | 1.42 | 0.32 | 3.33 | 3.38 | 2.66 | 2.59 | 5.00 | 5.05 | ns |
| 8 mA | Std. | 0.66 | 4.12 | 0.04 | 1.45 | 1.91 | 0.43 | 4.20 | 3.99 | 3.63 | 3.62 | 6.43 | 6.23 | ns |
|  | -1 | 0.56 | 3.51 | 0.04 | 1.23 | 1.62 | 0.36 | 3.57 | 3.40 | 3.09 | 3.08 | 5.47 | 5.30 | ns |
|  | -2 | 0.49 | 3.08 | 0.03 | 1.08 | 1.42 | 0.32 | 3.14 | 2.98 | 2.71 | 2.71 | 4.81 | 4.65 | ns |
| 12 mA | Std. | 0.66 | 3.80 | 0.04 | 1.45 | 1.91 | 0.43 | 3.87 | 3.09 | 3.73 | 4.24 | 6.10 | 5.32 | ns |
|  | -1 | 0.56 | 3.23 | 0.04 | 1.23 | 1.62 | 0.36 | 3.29 | 2.63 | 3.18 | 3.60 | 5.19 | 4.53 | ns |
|  | -2 | 0.49 | 2.83 | 0.03 | 1.08 | 1.42 | 0.32 | 2.89 | 2.31 | 2.79 | 3.16 | 4.56 | 3.98 | ns |
| 16 mA | Std. | 0.66 | 3.80 | 0.04 | 1.45 | 1.91 | 0.43 | 3.87 | 3.09 | 3.73 | 4.24 | 6.10 | 5.32 | ns |
|  | -1 | 0.56 | 3.23 | 0.04 | 1.23 | 1.62 | 0.36 | 3.29 | 2.63 | 3.18 | 3.60 | 5.19 | 4.53 | ns |
|  | -2 | 0.49 | 2.83 | 0.03 | 1.08 | 1.42 | 0.32 | 2.89 | 2.31 | 2.79 | 3.16 | 4.56 | 3.98 | ns |

## Notes:

1. Software default selection highlighted in gray.
2. For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

### 1.5 V LVCMOS (JESD8-11)

Low-voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general purpose 1.5 V applications. It uses a 1.5 V input buffer and push-pull output buffer.

Table 2-97 • Minimum and Maximum DC Input and Output Levels

| $\mathbf{1 . 5} \mathbf{V}$ <br> $\mathbf{L V C M O S}$ | $\mathbf{V}_{\mathbf{I L}}$ |  | $\mathbf{V}_{\mathbf{I H}}$ |  | $\mathbf{V}_{\mathbf{O L}}$ | $\mathbf{V}_{\mathbf{O H}}$ | $\mathbf{I}_{\mathbf{O L}}$ | $\mathbf{I}_{\mathbf{O H}}$ | $\mathbf{I}_{\mathbf{O S L}}$ | $\mathbf{I}_{\mathbf{O S H}}$ | $\mathbf{I}_{\mathbf{I L}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive <br> Strength | $\mathbf{M i n}, \mathbf{V}$ | $\mathbf{M a x}, \mathbf{V}$ | $\mathbf{M i n}, \mathbf{V}$ | $\mathbf{M a x}, \mathbf{v}$ | $\mathbf{M a x}, \mathbf{V}$ | $\mathbf{M i n}, \mathbf{v}$ | $\mathbf{m A}$ | $\mathbf{m A}$ | $\mathbf{M a x}, \mathbf{m A}$ |  |  |
| 2 mA | -0.3 | $0.30 * \mathrm{~V}_{\mathrm{CCI}}$ | $0.7 * \mathrm{~V}_{\mathrm{CCI}}$ | 3.6 | $0.25 * \mathrm{Max}_{\mathrm{CCI}}$ | $0.75 * \mathrm{~mA}_{\mathrm{CCI}}$ | 2 | 2 | 16 | $\boldsymbol{\mu A}^{\mathbf{2}}$ | $\boldsymbol{\mu A}^{\mathbf{2}}$ |
| 4 mA | -0.3 | $0.30 * \mathrm{~V}_{\mathrm{CCI}}$ | $0.7 * \mathrm{~V}_{\mathrm{CCI}}$ | 3.6 | $0.25 * \mathrm{~V}_{\mathrm{CCI}}$ | $0.75 * \mathrm{~V}_{\mathrm{CCI}}$ | 4 | 4 | 33 | 25 | 13 |
| 6 mA | -0.3 | $0.30 * \mathrm{~V}_{\mathrm{CCI}}$ | $0.7 * \mathrm{~V}_{\mathrm{CCI}}$ | 3.6 | $0.25 * \mathrm{~V}_{\mathrm{CCI}}$ | $0.75 * \mathrm{~V}_{\mathrm{CCI}}$ | 6 | 6 | 39 | 32 | 10 |
| 8 mA | -0.3 | $0.30 * \mathrm{~V}_{\mathrm{CCI}}$ | $0.7 * \mathrm{~V}_{\mathrm{CCI}}$ | 3.6 | $0.25 * \mathrm{~V}_{\mathrm{CCI}}$ | $0.75 * \mathrm{~V}_{\mathrm{CCI}}$ | 8 | 8 | 55 | 66 | 10 |
| 12 mA | -0.3 | $0.30 * \mathrm{~V}_{\mathrm{CCI}}$ | $0.7 * \mathrm{~V}_{\mathrm{CCI}}$ | 3.6 | $0.25 * \mathrm{~V}_{\mathrm{CCI}}$ | $0.75 * \mathrm{~V}_{\mathrm{CCI}}$ | 12 | 12 | 55 | 66 | 10 |

## Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.
3. Software default selection highlighted in gray.


Figure 2-98 • AC Loading
Table 2-98 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | $\mathbf{V}_{\text {REF }}$ (Typ) (V) | C LOAD (pF) |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1.5 | 0.75 | - | 35 |

Note: *Measuring point $=V_{\text {trip. }}$. See Table 2-75 on page 2-128 for a complete table of trip points.
$\qquad$

## Timing Characteristics

Table 2-99 • 1.5 V LVCMOS Low Slew
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=1.4 \mathrm{~V}$

| Drive Strength (mA) | Speed Grade | $t_{\text {dout }}$ | $\mathbf{t}_{\text {DP }}$ | $t_{\text {din }}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\text {PYS }}$ | $\mathrm{t}_{\text {EOUT }}$ | $\mathbf{t}_{\mathbf{z L}}$ | $\mathbf{t}_{\mathbf{z H}}$ | $\mathrm{t}_{\text {Lz }}$ | $\mathbf{t}_{\mathrm{HZ}}$ | $\mathbf{t}_{\mathbf{z L S}}$ | $\mathrm{t}_{\text {ZHS }}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 mA | Std. | 0.66 | 14.11 | 0.04 | 1.70 | 2.14 | 0.43 | 14.37 | 13.14 | 3.40 | 2.68 | 16.61 | 15.37 | ns |
|  | -1 | 0.56 | 12.00 | 0.04 | 1.44 | 1.82 | 0.36 | 12.22 | 11.17 | 2.90 | 2.28 | 14.13 | 13.08 | ns |
|  | -2 | 0.49 | 10.54 | 0.03 | 1.27 | 1.60 | 0.32 | 10.73 | 9.81 | 2.54 | 2.00 | 12.40 | 11.48 | ns |
| 4 mA | Std. | 0.66 | 11.23 | 0.04 | 1.70 | 2.14 | 0.43 | 11.44 | 9.87 | 3.77 | 3.36 | 13.68 | 12.10 | ns |
|  | -1 | 0.56 | 9.55 | 0.04 | 1.44 | 1.82 | 0.36 | 9.73 | 8.39 | 3.21 | 2.86 | 11.63 | 10.29 | ns |
|  | -2 | 0.49 | 8.39 | 0.03 | 1.27 | 1.60 | 0.32 | 8.54 | 7.37 | 2.81 | 2.51 | 10.21 | 9.04 | ns |
| 6 mA | Std. | 0.66 | 10.45 | 0.04 | 1.70 | 2.14 | 0.43 | 10.65 | 9.24 | 3.84 | 3.55 | 12.88 | 11.48 | ns |
|  | -1 | 0.56 | 8.89 | 0.04 | 1.44 | 1.82 | 0.36 | 9.06 | 7.86 | 3.27 | 3.02 | 10.96 | 9.76 | ns |
|  | -2 | 0.49 | 7.81 | 0.03 | 1.27 | 1.60 | 0.32 | 7.95 | 6.90 | 2.87 | 2.65 | 9.62 | 8.57 | ns |
| 8 mA | Std. | 0.66 | 10.02 | 0.04 | 1.70 | 2.14 | 0.43 | 10.20 | 9.23 | 3.97 | 4.22 | 12.44 | 11.47 | ns |
|  | -1 | 0.56 | 8.52 | 0.04 | 1.44 | 1.82 | 0.36 | 8.68 | 7.85 | 3.38 | 3.59 | 10.58 | 9.75 | ns |
|  | -2 | 0.49 | 7.48 | 0.03 | 1.27 | 1.60 | 0.32 | 7.62 | 6.89 | 2.97 | 3.15 | 9.29 | 8.56 | ns |
| 12 mA | Std. | 0.66 | 10.02 | 0.04 | 1.70 | 2.14 | 0.43 | 10.20 | 9.23 | 3.97 | 4.22 | 12.44 | 11.47 | ns |
|  | -1 | 0.56 | 8.52 | 0.04 | 1.44 | 1.82 | 0.36 | 8.68 | 7.85 | 3.38 | 3.59 | 10.58 | 9.75 | ns |
|  | -2 | 0.49 | 7.48 | 0.03 | 1.27 | 1.60 | 0.32 | 7.62 | 6.89 | 2.97 | 3.15 | 9.29 | 8.56 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

## Fusion Family of Mixed-Signal Flash FPGAs

Table 2-100 • 1.5 V LVCMOS High Slew
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=1.4 \mathrm{~V}$

| Drive Strength (mA) | Speed Grade | $\mathbf{t}_{\text {DOUT }}$ | $\mathbf{t}_{\text {DP }}$ | $t_{\text {DIN }}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\text {PYS }}$ | $t_{\text {EOUT }}$ | $\mathrm{t}_{\mathbf{z L}}$ | $\mathbf{t}_{\mathbf{z H}}$ | $\mathbf{t}_{\text {Lz }}$ | $\mathbf{t H Z}$ | $t_{\text {zLS }}$ | $t_{\text {zHS }}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 mA | Std. | 0.66 | 8.53 | 0.04 | 1.70 | 2.14 | 0.43 | 7.26 | 8.53 | 3.39 | 2.79 | 9.50 | 10.77 | ns |
|  | -1 | 0.56 | 7.26 | 0.04 | 1.44 | 1.82 | 0.36 | 6.18 | 7.26 | 2.89 | 2.37 | 8.08 | 9.16 | ns |
|  | -2 | 0.49 | 6.37 | 0.03 | 1.27 | 1.60 | 0.32 | 5.42 | 6.37 | 2.53 | 2.08 | 7.09 | 8.04 | ns |
| 4 mA | Std. | 0.66 | 5.41 | 0.04 | 1.70 | 2.14 | 0.43 | 5.22 | 5.41 | 3.75 | 3.48 | 7.45 | 7.65 | ns |
|  | -1 | 0.56 | 4.60 | 0.04 | 1.44 | 1.82 | 0.36 | 4.44 | 4.60 | 3.19 | 2.96 | 6.34 | 6.50 | ns |
|  | -2 | 0.49 | 4.04 | 0.03 | 1.27 | 1.60 | 0.32 | 3.89 | 4.04 | 2.80 | 2.60 | 5.56 | 5.71 | ns |
| 6 mA | Std. | 0.66 | 4.80 | 0.04 | 1.70 | 2.14 | 0.43 | 4.89 | 4.75 | 3.83 | 3.67 | 7.13 | 6.98 | ns |
|  | -1 | 0.56 | 4.09 | 0.04 | 1.44 | 1.82 | 0.36 | 4.16 | 4.04 | 3.26 | 3.12 | 6.06 | 5.94 | ns |
|  | -2 | 0.49 | 3.59 | 0.03 | 1.27 | 1.60 | 0.32 | 3.65 | 3.54 | 2.86 | 2.74 | 5.32 | 5.21 | ns |
| 8 mA | Std. | 0.66 | 4.42 | 0.04 | 1.70 | 2.14 | 0.43 | 4.50 | 3.62 | 3.96 | 4.37 | 6.74 | 5.86 | ns |
|  | -1 | 0.56 | 3.76 | 0.04 | 1.44 | 1.82 | 0.36 | 3.83 | 3.08 | 3.37 | 3.72 | 5.73 | 4.98 | ns |
|  | -2 | 0.49 | 3.30 | 0.03 | 1.27 | 1.60 | 0.32 | 3.36 | 2.70 | 2.96 | 3.27 | 5.03 | 4.37 | ns |
| 12 mA | Std. | 0.66 | 4.42 | 0.04 | 1.70 | 2.14 | 0.43 | 4.50 | 3.62 | 3.96 | 4.37 | 6.74 | 5.86 | ns |
|  | -1 | 0.56 | 3.76 | 0.04 | 1.44 | 1.82 | 0.36 | 3.83 | 3.08 | 3.37 | 3.72 | 5.73 | 4.98 | ns |
|  | -2 | 0.49 | 3.30 | 0.03 | 1.27 | 1.60 | 0.32 | 3.36 | 2.70 | 2.96 | 3.27 | 5.03 | 4.37 | ns |

## Notes:

1. Software default selection highlighted in gray.
2. For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

### 3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and $66 \mathrm{MHz} \mathrm{PCI} \mathrm{Bus} \mathrm{applications}$.
Table 2-101 • Minimum and Maximum DC Input and Output Levels

| 3.3 V PCI/PCI-X | $\mathbf{V}_{\text {IL }}$ |  | $\mathrm{V}_{\text {IH }}$ |  | $\mathrm{V}_{\mathrm{OL}}$ | $\mathrm{V}_{\mathbf{O H}}$ | $\mathbf{I O L}$ | $\mathbf{I O H}$ | IOSL | IOSH | $I_{\text {IL }}$ | $\mathbf{I}_{\mathbf{I H}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive Strength | Min, V | Max, V | Min, V | Max, V | Max, V | Min, V | mA | mA | Max, mA ${ }^{1}$ | Max, mA ${ }^{1}$ | $\mu \mathbf{A}^{2}$ | $\mu \mathbf{A}^{\mathbf{2}}$ |
| Per PCI specification | Per PCI curves |  |  |  |  |  |  |  |  |  | 10 | 10 |

## Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.

AC loadings are defined per the $\mathrm{PCI} / \mathrm{PCI}-\mathrm{X}$ specifications for the data path; Actel loadings for enable path characterization are described in Figure 2-99.


## Figure 2-99 • AC Loading

AC loading are defined per $\mathrm{PCI} / \mathrm{PCl}-\mathrm{X}$ specifications for the data path; Actel loading for tristate is described in Table 2102.

Table 2-102 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | $\mathbf{V}_{\text {REF }}$ (Typ) (V) | CLOAD (pF) |
| :--- | :---: | :---: | :---: | :---: |
| 0 | 3.3 | $0.285 * V_{C C I} f \circ t_{D P(R)}$ | - | 10 |
|  |  | $0.615 * V_{C C I} f o r t_{D P(F)}$ |  |  |

Note: *Measuring point $=V_{\text {trip. }}$. See Table 2-75 on page 2-128 for a complete table of trip points.
Timing Characteristics
Table 2-103 • 3.3 V PCI/PCI-X
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}$

| Speed Grade | $\mathbf{t}_{\mathbf{D O U T}}$ | $\mathbf{t}_{\mathbf{D P}}$ | $\mathbf{t}_{\mathbf{D I N}}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\mathbf{P Y S}}$ | $\mathbf{t}_{\mathbf{E O U T}}$ | $\mathbf{t}_{\mathbf{Z L}}$ | $\mathbf{t}_{\mathbf{Z H}}$ | $\mathbf{t}_{\mathbf{L Z}}$ | $\mathbf{t}_{\mathbf{H Z}}$ | $\mathbf{t}_{\mathbf{z L S}}$ | $\mathbf{t}_{\mathbf{Z H S}}$ | $\mathbf{U n i t s}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Std. | 0.66 | 2.81 | 0.04 | 1.05 | 1.67 | 0.43 | 2.86 | 2.00 | 3.28 | 3.61 | 5.09 | 4.23 | ns |
| -1 | 0.56 | 2.39 | 0.04 | 0.89 | 1.42 | 0.36 | 2.43 | 1.70 | 2.79 | 3.07 | 4.33 | 3.60 | ns |
| -2 | 0.49 | 2.09 | 0.03 | 0.78 | 1.25 | 0.32 | 2.13 | 1.49 | 2.45 | 2.70 | 3.80 | 3.16 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

## Fusion Family of Mixed-Signal Flash FPGAs

## Voltage Referenced I/O Characteristics

### 3.3 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open drain output buffer. The $\mathrm{V}_{\mathrm{CCI}}$ pin should be connected to 3.3 V .

## Table 2-104 • Minimum and Maximum DC Input and Output Levels

| 3.3 V GTL | $\mathbf{V}_{\text {IL }}$ |  | $\mathbf{V I H}_{\text {I }}$ |  | V ${ }_{\text {OL }}$ | $\mathrm{V}_{\mathbf{O H}}$ | $\mathrm{IOL}^{\text {O }}$ | $\mathrm{IOH}^{\prime}$ | IosL | IOSH | IIL | $\mathbf{I I H}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive Strength | Min, V | Max, V | Min, V | Max, V | Max, V | Min, V | mA | mA | Max, mA ${ }^{1}$ | Max, mA ${ }^{1}$ | $\mu \mathrm{A}^{2}$ | $\mu \mathrm{A}^{2}$ |
| $25 \mathrm{~mA}^{3}$ | -0.3 | $\mathrm{V}_{\text {REF }}-0.05$ | $\mathrm{V}_{\text {REF }}+0.05$ | 3.6 | 0.4 | - | 25 | 25 | 181 | 268 | 10 | 10 |

## Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.
3. Output drive strength is below JEDEC specification.


Figure 2-100 • AC Loading
Table 2-105 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | $\mathbf{V}_{\text {REF }}$ (Typ) (V) | $\mathbf{V}_{\mathbf{T T}}$ (Typ) (V) | C LOAD (pF) $^{\left(V_{\text {REF }}-0.05\right.}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {REF }}+0.05$ | 0.8 | 0.8 | 1.2 | 10 |  |

Note: *Measuring point $=V_{\text {trip. }}$. See Table 2-75 on page 2-128 for a complete table of trip points.
Timing Characteristics
Table 2-106 • 3.3 V GTL
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V} \mathrm{~V}_{\mathrm{REF}}=0.8 \mathrm{~V}$

| Speed Grade | $\mathbf{t}_{\mathbf{D O U T}}$ | $\mathbf{t}_{\mathbf{D P}}$ | $\mathbf{t}_{\mathbf{D I N}}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\mathbf{E O U T}}$ | $\mathbf{t}_{\mathbf{Z L}}$ | $\mathbf{t}_{\mathbf{z H}}$ | $\mathbf{t}_{\mathbf{L Z}}$ | $\mathbf{t}_{\mathbf{H Z}}$ | $\mathbf{t}_{\mathbf{Z L S}}$ | $\mathbf{t}_{\mathbf{z H S}}$ | Units |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Std. | 0.66 | 2.08 | 0.04 | 2.93 | 0.43 | 2.04 | 2.08 |  |  | 4.27 | 4.31 | ns |
| -1 | 0.56 | 1.77 | 0.04 | 2.50 | 0.36 | 1.73 | 1.77 |  |  | 3.63 | 3.67 | ns |
| -2 | 0.49 | 1.55 | 0.03 | 2.19 | 0.32 | 1.52 | 1.55 |  |  | 3.19 | 3.22 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

### 2.5 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open drain output buffer. The $\mathrm{V}_{\mathrm{CCI}}$ pin should be connected to 2.5 V .

Table 2-107 • Minimum and Maximum DC Input and Output Levels

| 2.5 GTL | $\mathbf{V}_{\mathbf{I L}}$ |  | $\mathbf{V}_{\mathbf{I H}}$ |  | $\mathbf{V}_{\mathbf{O L}}$ | $\mathbf{V}_{\mathbf{O H}}$ | $\mathbf{I}_{\mathbf{O L}}$ | $\mathbf{I}_{\mathbf{O H}}$ | $\mathbf{I}_{\mathbf{O S L}}$ | $\mathbf{I}_{\mathbf{O S H}}$ | $\mathbf{I}_{\mathbf{I L}}$ | $\mathbf{I}_{\mathbf{I H}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive Strength | $\mathbf{M i n}, \mathbf{V}$ | $\mathbf{M a x}, \mathbf{V}$ | $\mathbf{M i n}, \mathbf{V}$ | $\mathbf{M a x}, \mathbf{V}$ | $\mathbf{M a x}, \mathbf{V}$ | $\mathbf{M i n}, \mathbf{V}$ | $\mathbf{m A}$ | $\mathbf{m A}$ | $\mathbf{M a x}, \mathbf{m A}$ | $\mathbf{M a x}^{\mathbf{1}} \mathbf{m A}^{\mathbf{1}}$ | $\mathbf{\mu A}^{\mathbf{2}}$ | $\boldsymbol{\mu A}^{\mathbf{2}}$ |
| $25 \mathrm{~mA}^{3}$ | -0.3 | $\mathrm{~V}_{\text {REF }}-0.05$ | $\mathrm{~V}_{\text {REF }}+0.05$ | 3.6 | 0.4 | - | 25 | 25 | 124 | 169 | 10 | 10 |

## Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.
3. Output drive strength is below JEDEC specification.


Figure 2-101 • AC Loading
Table 2-108 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | $\mathbf{V}_{\text {REF }}$ (Typ) (V) | $\mathbf{V}_{\text {TT }}$ (Typ) (V) | C $_{\text {LOAD }}$ (pF) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {REF }}-0.05$ | $\mathrm{~V}_{\text {REF }}+0.05$ | 0.8 | 0.8 | 1.2 | 10 |

Note: *Measuring point $=V_{\text {trip. }}$. See Table 2-75 on page 2-128 for a complete table of trip points.
Timing Characteristics
Table 2-109 • 2.5 V GTL
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V} \mathrm{~V}_{\text {REF }}=0.8 \mathrm{~V}$

| Speed Grade | $\mathbf{t}_{\mathbf{D O U T}}$ | $\mathbf{t}_{\mathbf{D P}}$ | $\mathbf{t}_{\mathbf{D I N}}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\mathbf{E O U T}}$ | $\mathbf{t}_{\mathbf{Z L}}$ | $\mathbf{t}_{\mathbf{Z H}}$ | $\mathbf{t}_{\mathbf{L Z}}$ | $\mathbf{t}_{\mathbf{H Z}}$ | $\mathbf{t}_{\mathbf{Z L S}}$ | $\mathbf{t}_{\mathbf{Z H S}}$ | $\mathbf{U n i t s}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Std. | 0.66 | 2.13 | 0.04 | 2.46 | 0.43 | 2.16 | 2.13 |  |  | 4.40 | 4.36 | ns |
| -1 | 0.56 | 1.81 | 0.04 | 2.09 | 0.36 | 1.84 | 1.81 |  |  | 3.74 | 3.71 | ns |
| -2 | 0.49 | 1.59 | 0.03 | 1.83 | 0.32 | 1.61 | 1.59 |  |  | 3.28 | 3.26 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

### 3.3 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open drain output buffer. The $\mathrm{V}_{\mathrm{Cl}}$ pin should be connected to 3.3 V .

Table 2-110 • Minimum and Maximum DC Input and Output Levels

| 3.3 V GTL+ | $\mathbf{V}_{\text {IL }}$ |  | $\mathbf{V}_{\mathbf{I H}}$ |  | $\mathbf{V}_{\mathbf{O L}}$ | $\mathbf{V}_{\mathbf{O H}}$ | $\mathbf{I O L}_{\mathbf{O}}$ | $\mathbf{I O H}^{\text {O }}$ | IosL | IOSH | $\mathrm{I}_{\mathbf{I L}}$ | $\mathbf{I}_{\mathbf{H}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive Strength | Min, V | Max, V | Min, V | Max, V | Max, V | Min, V | mA | mA | Max, mA ${ }^{\mathbf{1}}$ | Max, mA ${ }^{1}$ | $\mu A^{2}$ | $\mu A^{2}$ |
| 35 mA | -0.3 | $\mathrm{V}_{\text {REF }}-0.1$ | $V_{\text {REF }}+0.1$ | 3.6 | 0.6 | - | 35 | 35 | 181 | 268 | 10 | 10 |

## Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.


Figure 2-102 • AC Loading
Table 2-111 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | $\mathbf{V}_{\text {REF }}$ (Typ) (V) | $\mathbf{V}_{\mathbf{T T}}$ (Typ) (V) | C $_{\text {LOAD }}$ (pF) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {REF }}-0.1$ | $\mathrm{~V}_{\text {REF }}+0.1$ | 1.0 | 1.0 | 1.5 | 10 |

Note: *Measuring point $=V_{\text {trip. }}$. See Table 2-75 on page 2-128 for a complete table of trip points.
Timing Characteristics
Table 2-112 • 3.3 V GTL+
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=1.0 \mathrm{~V}$

| Speed Grade | $\mathbf{t}_{\mathbf{D O U T}}$ | $\mathbf{t}_{\mathbf{D P}}$ | $\mathbf{t}_{\mathbf{D I N}}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\mathbf{E O U T}}$ | $\mathbf{t}_{\mathbf{Z L}}$ | $\mathbf{t}_{\mathbf{Z H}}$ | $\mathbf{t}_{\mathbf{L Z}}$ | $\mathbf{t}_{\mathbf{H Z}}$ | $\mathbf{t}_{\mathbf{Z L S}}$ | $\mathbf{t}_{\mathbf{Z H S}}$ | Units |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Std. | 0.66 | 2.06 | 0.04 | 1.59 | 0.43 | 2.09 | 2.06 |  |  | 4.33 | 4.29 | ns |
| -1 | 0.56 | 1.75 | 0.04 | 1.35 | 0.36 | 1.78 | 1.75 |  |  | 3.68 | 3.65 | ns |
| -2 | 0.49 | 1.53 | 0.03 | 1.19 | 0.32 | 1.56 | 1.53 |  |  | 3.23 | 3.20 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

### 2.5 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open drain output buffer. The $\mathrm{V}_{\mathrm{CCI}}$ pin should be connected to 2.5 V .

Table 2-113 • Minimum and Maximum DC Input and Output Levels

| 2.5 V GTL+ | $\mathrm{V}_{\text {IL }}$ |  | $\mathbf{V}_{\mathbf{I H}}$ |  | $\mathrm{V}_{\text {OL }}$ | $\mathrm{V}_{\mathrm{OH}}$ | $\mathrm{I}_{\mathbf{O L}}$ | IOH | Iost | losh | $\mathrm{I}_{\text {IL }}$ | $\mathrm{I}_{\mathbf{H}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive Strength | Min, V | Max, V | Min, $\mathbf{V}$ | Max, v | Max, $\mathbf{v}$ | Min, V | mA | mA | Max, mA ${ }^{1}$ | Max, mA ${ }^{1}$ | $\mu \mathrm{A}^{2}$ | $\boldsymbol{\mu} \mathrm{A}^{2}$ |
| 33 mA | -0.3 | $\mathrm{V}_{\text {REF }}-0.1$ | $\mathrm{V}_{\text {REF }}+0.1$ | 3.6 | 0.6 | - | 33 | 33 | 124 | 169 | 10 | 10 |

## Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.


Figure 2-103 • AC Loading
Table 2-114 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | $\mathbf{V}_{\text {REF }}$ (Typ) (V) | $\mathrm{V}_{\mathrm{TT}}$ (Typ) (V) | C LoAd (pF) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {REF }}-0.1$ | $V_{\text {REF }}+0.1$ | 1.0 | 1.0 | 1.5 | 10 |

Note: *Measuring point $=V_{\text {trip. }}$. See Table 2-75 on page 2-128 for a complete table of trip points.
Timing Characteristics
Table 2-115 • 2.5 V GTL+
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=1.0 \mathrm{~V}$

| Speed Grade | $\mathbf{t}_{\mathbf{D O U T}}$ | $\mathbf{t}_{\mathbf{D P}}$ | $\mathbf{t}_{\mathbf{D I N}}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\mathbf{E O U T}}$ | $\mathbf{t}_{\mathbf{Z L}}$ | $\mathbf{t}_{\mathbf{Z H}}$ | $\mathbf{t}_{\mathbf{L Z}}$ | $\mathbf{t}_{\mathbf{H Z}}$ | $\mathbf{t}_{\mathbf{Z L S}}$ | $\mathbf{t}_{\mathbf{Z H S}}$ | Units |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Std. | 0.66 | 2.21 | 0.04 | 1.59 | 0.43 | 2.25 | 2.10 |  |  | 4.48 | 4.34 | ns |
| -1 | 0.56 | 1.88 | 0.04 | 1.35 | 0.36 | 1.91 | 1.79 |  |  | 3.81 | 3.69 | ns |
| -2 | 0.49 | 1.65 | 0.03 | 1.19 | 0.32 | 1.68 | 1.57 |  |  | 3.35 | 3.24 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

## HSTL Class I

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). Fusion devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-116 • Minimum and Maximum DC Input and Output Levels

| HSTL Class I | $\mathrm{V}_{\text {IL }}$ |  | $\mathbf{V}_{\mathbf{I H}}$ |  | $\mathbf{V}_{\mathbf{O L}}$ | $\mathbf{V O H}_{\mathbf{O H}}$ | $\mathrm{I}_{\mathbf{O L}}$ | $\mathrm{I}_{\mathbf{O H}}$ | IOSL | IOSH | $I_{\text {IL }}$ | $\mathbf{I}_{\mathbf{I H}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive Strength | Min, V | Max, V | Min, V | Max, V | Max, V | Min, V | mA | mA | Max, mA ${ }^{1}$ | Max, mA ${ }^{1}$ | $\mu \mathrm{A}^{2}$ | $\mu \mathrm{A}^{2}$ |
| 8 mA | -0.3 | $\mathrm{V}_{\text {REF }}-0.1$ | $V_{\text {REF }}+0.1$ | 3.6 | 0.4 | $\mathrm{V}_{\mathrm{CCI}}-0.4$ | 8 | 8 | 39 | 32 | 10 | 10 |

## Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.


Figure 2-104 • AC Loading
Table 2-117 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | $\mathbf{V}_{\text {REF }}$ (Typ) (V) | $\mathbf{V}_{\mathbf{T T}}$ (Typ) (V) | C $_{\text {LOAD }}$ (pF) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {REF }}-0.1$ | $\mathrm{~V}_{\text {REF }}+0.1$ | 0.75 | 0.75 | 0.75 | 20 |

Note: *Measuring point $=V_{\text {trip. }}$ See Table 2-75 on page 2-128 for a complete table of trip points.
Timing Characteristics
Table 2-118 • HSTL Class I
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0.75 \mathrm{~V}$

| Speed Grade | $\mathbf{t}_{\mathbf{D O U T}}$ | $\mathbf{t}_{\mathbf{D P}}$ | $\mathbf{t}_{\mathbf{D I N}}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\mathbf{E O U T}}$ | $\mathbf{t}_{\mathbf{Z L}}$ | $\mathbf{t}_{\mathbf{Z H}}$ | $\mathbf{t}_{\mathbf{L Z}}$ | $\mathbf{t}_{\mathbf{H Z}}$ | $\mathbf{t}_{\mathbf{Z L S}}$ | $\mathbf{t}_{\mathbf{Z H S}}$ | Units |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Std. | 0.66 | 3.18 | 0.04 | 2.12 | 0.43 | 3.24 | 3.14 |  |  | 5.47 | 5.38 | ns |
| -1 | 0.56 | 2.70 | 0.04 | 1.81 | 0.36 | 2.75 | 2.67 |  |  | 4.66 | 4.58 | ns |
| -2 | 0.49 | 2.37 | 0.03 | 1.59 | 0.32 | 2.42 | 2.35 |  |  | 4.09 | 4.02 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.
$\qquad$

## HSTL Class II

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). Fusion devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-119 • Minimum and Maximum DC Input and Output Levels

| HSTL Class II | $\mathrm{V}_{\text {IL }}$ |  | $\mathbf{V}_{\mathbf{I H}}$ |  | $\mathrm{V}_{\text {oL }}$ | $\mathrm{V}_{\mathrm{OH}}$ | IoL | IOH | lost | Iosh | IIL | $\mathrm{I}_{\mathbf{I}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive Strength | Min, V | Max, v | $\mathbf{M i n}, \mathbf{V}$ | Max, V | Max, v | Min, $\mathbf{v}$ | mA | mA | Max, mA ${ }^{1}$ | Max, mA ${ }^{1}$ | $\mu \mathrm{A}^{2}$ | $\mu \mathrm{A}^{2}$ |
| $15 \mathrm{~mA}^{3}$ | -0.3 | $\mathrm{V}_{\text {REF }}-0.1$ | $\mathrm{V}_{\text {REF }}+0.1$ | 3.6 | 0.4 | $\mathrm{V}_{\text {cli }}-0.4$ | 15 | 15 | 55 | 66 | 10 | 10 |

## Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.
3. Output drive strength is below JEDEC specification.


Figure 2-105 • AC Loading
Table 2-120 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | $\mathbf{V}_{\text {REF }}$ (Typ) (V) | $\mathbf{V}_{\mathbf{T T}}$ (Typ) (V) | $\mathbf{C}_{\text {LoAD }}$ (pF) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {REF }}-0.1$ | $\mathrm{~V}_{\text {REF }}+0.1$ | 0.75 | 0.75 | 0.75 | 20 |

Note: *Measuring point $=V_{\text {trip. }}$ See Table 2-75 on page 2-128 for a complete table of trip points.
Timing Characteristics
Table 2-121 • HSTL Class II
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=\mathbf{0 . 7 5} \mathrm{V}$

| Speed Grade | $\mathbf{t}_{\mathbf{D O U T}}$ | $\mathbf{t}_{\mathbf{D P}}$ | $\mathbf{t}_{\mathbf{D I N}}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\mathbf{E O U T}}$ | $\mathbf{t}_{\mathbf{Z L}}$ | $\mathbf{t}_{\mathbf{Z H}}$ | $\mathbf{t}_{\mathbf{L Z}}$ | $\mathbf{t}_{\mathbf{H Z}}$ | $\mathbf{t}_{\mathbf{Z L S}}$ | $\mathbf{t}_{\mathbf{Z H S}}$ | Units |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Std. | 0.66 | 3.02 | 0.04 | 2.12 | 0.43 | 3.08 | 2.71 |  |  | 5.32 | 4.95 | ns |
| -1 | 0.56 | 2.57 | 0.04 | 1.81 | 0.36 | 2.62 | 2.31 |  |  | 4.52 | 4.21 | ns |
| -2 | 0.49 | 2.26 | 0.03 | 1.59 | 0.32 | 2.30 | 2.03 |  |  | 3.97 | 3.70 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

## SSTL2 Class I

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Fusion devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-122 • Minimum and Maximum DC Input and Output Levels

| SSTL2 Class I | $\mathrm{V}_{\text {IL }}$ |  | $\mathbf{V}_{\mathbf{I H}}$ |  | $\mathbf{V}_{\mathbf{O L}}$ | $\mathrm{V}_{\mathbf{O H}}$ | IoL | IOH | Iost | IOSH | IIL | $\mathbf{I}_{\mathbf{I H}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive Strength | Min, V | Max, V | Min, V | Max, V | Max, V | Min, V | mA | mA | Max, mA ${ }^{\mathbf{1}}$ | Max, mA ${ }^{\mathbf{1}}$ | $\mu A^{2}$ | $\mu A^{2}$ |
| 15 mA | -0.3 | $\mathrm{V}_{\text {REF }}-0.2$ | $\mathrm{V}_{\text {REF }}+0.2$ | 3.6 | 0.54 | $\mathrm{V}_{\mathrm{CCI}}-0.62$ | 15 | 15 | 87 | 83 | 10 | 10 |

## Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.


Figure 2-106 • AC Loading
Table 2-123 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | $\mathbf{V}_{\text {REF }}$ (Typ) (V) | $\mathbf{V}_{\mathbf{T T}}$ (Typ) (V) | C $_{\text {LOAD }}$ (pF) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {REF }}-0.2$ | $\mathrm{~V}_{\text {REF }}+0.2$ | 1.25 | 1.25 | 1.25 | 30 |

Note: *Measuring point $=V_{\text {trip. }}$. See Table 2-75 on page 2-128 for a complete table of trip points.
Timing Characteristics
Table 2-124 • SSTL 2 Class I
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=1.25 \mathrm{~V}$

| Speed Grade | $\mathbf{t}_{\mathbf{D O U T}}$ | $\mathbf{t}_{\mathbf{D P}}$ | $\mathbf{t}_{\mathbf{D I N}}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\mathbf{E O U T}}$ | $\mathbf{t}_{\mathbf{Z L}}$ | $\mathbf{t}_{\mathbf{Z H}}$ | $\mathbf{t}_{\mathbf{L Z}}$ | $\mathbf{t}_{\mathbf{H Z}}$ | $\mathbf{t}_{\mathbf{Z L S}}$ | $\mathbf{t}_{\mathbf{Z H S}}$ | Units |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Std. | 0.66 | 2.13 | 0.04 | 1.33 | 0.43 | 2.17 | 1.85 |  |  | 4.40 | 4.08 | ns |
| -1 | 0.56 | 1.81 | 0.04 | 1.14 | 0.36 | 1.84 | 1.57 |  |  | 3.74 | 3.47 | ns |
| -2 | 0.49 | 1.59 | 0.03 | 1.00 | 0.32 | 1.62 | 1.38 |  |  | 3.29 | 3.05 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.
$\qquad$

## SSTL2 Class II

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Fusion devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-125 • Minimum and Maximum DC Input and Output Levels

| SSTL2 Class II | $\mathbf{V}_{\mathbf{I L}}$ |  | $\mathbf{V}_{\mathbf{I H}}$ |  | $\mathbf{V}_{\mathbf{O L}}$ | $\mathbf{V}_{\mathbf{O H}}$ | $\mathbf{I}_{\mathbf{O L}}$ | $\mathbf{I}_{\mathbf{O H}}$ | $\mathbf{I}_{\mathbf{O S L}}$ | $\mathbf{I}_{\mathbf{O S H}}$ | $\mathbf{I}_{\mathbf{I L}}$ | $\mathbf{I}_{\mathbf{I H}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive Strength | Min, $\mathbf{V}$ | $\mathbf{M a x}, \mathbf{V}$ | $\mathbf{M i n}, \mathbf{V}$ | $\mathbf{M a x}, \mathbf{V}$ | $\mathbf{M a x}, \mathbf{V}$ | $\mathbf{M i n}, \mathbf{V}$ | $\mathbf{m A}$ | $\mathbf{m A}$ | $\mathbf{M a x}_{\mathbf{M}} \mathbf{m A}^{\mathbf{1}}$ | $\mathbf{M a x}_{\mathbf{M a x}} \mathbf{m A}^{\mathbf{1}}$ | $\mathbf{\mu A}^{\mathbf{2}}$ | $\boldsymbol{\mu A}^{\mathbf{2}}$ |
| 18 mA | -0.3 | $\mathrm{~V}_{\text {REF }}-0.2$ | $\mathrm{~V}_{\text {REF }}+0.2$ | 3.6 | 0.35 | $\mathrm{~V}_{\mathrm{CCI}}-0.43$ | 18 | 18 | 124 | 169 | 10 | 10 |

## Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.


Figure 2-107 • AC Loading
Table 2-126 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | $\mathbf{V}_{\mathbf{R E F}}$ (Typ) (V) | $\mathbf{V}_{\mathbf{T T}}$ (Typ) (V) | $\mathbf{C}_{\text {LOAD }}$ (pF) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {REF }}-0.2$ | $\mathrm{~V}_{\text {REF }}+0.2$ | 1.25 | 1.25 | 1.25 | 30 |

Note: *Measuring point $=V_{\text {trip. }}$. See Table 2-75 on page 2-128 for a complete table of trip points.
Timing Characteristics
Table 2-127• SSTL 2 Class II
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=1.25 \mathrm{~V}$

| Speed Grade | $\mathbf{t}_{\mathbf{D O U T}}$ | $\mathbf{t}_{\mathbf{D P}}$ | $\mathbf{t}_{\mathbf{D I N}}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\mathbf{E O U T}}$ | $\mathbf{t}_{\mathbf{Z L}}$ | $\mathbf{t}_{\mathbf{Z H}}$ | $\mathbf{t}_{\mathbf{L Z}}$ | $\mathbf{t}_{\mathbf{H Z}}$ | $\mathbf{t}_{\mathbf{Z L S}}$ | $\mathbf{t}_{\mathbf{Z H S}}$ | Units |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Std. | 0.66 | 2.17 | 0.04 | 1.33 | 0.43 | 2.21 | 1.77 |  |  | 4.44 | 4.01 | ns |
| -1 | 0.56 | 1.84 | 0.04 | 1.14 | 0.36 | 1.88 | 1.51 |  |  | 3.78 | 3.41 | ns |
| -2 | 0.49 | 1.62 | 0.03 | 1.00 | 0.32 | 1.65 | 1.32 |  |  | 3.32 | 2.99 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

## SSTL3 Class I

Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Fusion devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-128 • Minimum and Maximum DC Input and Output Levels

| SSTL3 Class I | $\mathbf{V}_{\mathbf{I L}}$ |  | $\mathbf{V}_{\mathbf{I H}}$ |  | $\mathbf{V}_{\mathbf{O L}}$ | $\mathbf{V}_{\mathbf{O H}}$ | $\mathbf{I}_{\mathbf{O L}}$ | $\mathbf{I}_{\mathbf{O H}}$ | $\mathbf{I}_{\mathbf{O S L}}$ | $\mathbf{I}_{\mathbf{O S H}}$ | $\mathbf{I}_{\mathbf{I L}}$ | $\mathbf{I}_{\mathbf{I H}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive Strength | $\mathbf{M i n}, \mathbf{V}$ | $\mathbf{M a x}, \mathbf{V}$ | $\mathbf{M i n}, \mathbf{V}$ | $\mathbf{M a x}, \mathbf{V}$ | $\mathbf{M a x}, \mathbf{V}$ | $\mathbf{M i n}, \mathbf{V}$ | $\mathbf{m A}$ | $\mathbf{m A}$ | $\mathbf{M a x}^{\mathbf{m}} \mathbf{m A}^{\mathbf{1}}$ | $\mathbf{M a x}_{\mathbf{M}} \mathbf{m A}^{\mathbf{1}}$ | $\boldsymbol{\mu A}^{\mathbf{2}}$ | $\boldsymbol{\mu A}^{\mathbf{2}}$ |
| 14 mA | -0.3 | $\mathrm{~V}_{\text {REF }}-0.2$ | $\mathrm{~V}_{\text {REF }}+0.2$ | 3.6 | 0.7 | $\mathrm{~V}_{\mathrm{CCI}}-1.1$ | 14 | 14 | 54 | 51 | 10 | 10 |

## Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.


Figure 2-108 • AC Loading
Table 2-129 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | $\mathbf{V}_{\text {REF }}$ (Typ) (V) | $\mathbf{V}_{\mathbf{T T}}$ (Typ) (V) | C LoAd $^{(\mathbf{p F})}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {REF }}-0.2$ | $\mathrm{~V}_{\text {REF }}+0.2$ | 1.5 | 1.5 | 1.485 | 30 |

Note: *Measuring point $=V_{\text {trip. }}$. See Table 2-75 on page 2-128 for a complete table of trip points.

## Timing Characteristics

Table 2-130 • SSTL3 Class I
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=1.5 \mathrm{~V}$

| Speed Grade | $\mathbf{t}_{\mathbf{D O U T}}$ | $\mathbf{t}_{\mathbf{D P}}$ | $\mathbf{t}_{\mathbf{D I N}}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\mathbf{E O U T}}$ | $\mathbf{t}_{\mathbf{Z L}}$ | $\mathbf{t}_{\mathbf{Z H}}$ | $\mathbf{t}_{\mathbf{L Z}}$ | $\mathbf{t}_{\mathbf{H Z}}$ | $\mathbf{t}_{\mathbf{z L S}}$ | $\mathbf{t}_{\mathbf{z H S}}$ | Units |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Std. | 0.66 | 2.31 | 0.04 | 1.25 | 0.43 | 2.35 | 1.84 |  |  | 4.59 | 4.07 | ns |
| -1 | 0.56 | 1.96 | 0.04 | 1.06 | 0.36 | 2.00 | 1.56 |  |  | 3.90 | 3.46 | ns |
| -2 | 0.49 | 1.72 | 0.03 | 0.93 | 0.32 | 1.75 | 1.37 |  |  | 3.42 | 3.04 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.
$\qquad$

## SSTL3 Class II

Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Fusion devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-131 • Minimum and Maximum DC Input and Output Levels

| SSTL3 Class II | $\mathrm{V}_{\text {IL }}$ |  | $\mathbf{V}_{\mathbf{I H}}$ |  | $\mathrm{V}_{\text {OL }}$ | $\mathrm{V}_{\mathrm{OH}}$ | IoL | $\mathrm{I}_{\mathbf{O H}}$ | lost | losh | $\mathrm{I}_{\text {IL }}$ | $\mathrm{I}_{\mathbf{I H}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drive Strength | Min, v | Max, $\mathbf{v}$ | Min, V | Max, v | Max, v | Min, V | mA | mA | Max, mA ${ }^{1}$ | Max, mA ${ }^{1}$ | $\mathrm{A}^{2}$ | $\mu \mathrm{A}^{2}$ |
| 21 mA | -0.3 | $\mathrm{V}_{\text {REF }}-0.2$ | $\mathrm{V}_{\text {REF }}+0.2$ | 3.6 | 0.5 | $\mathrm{V}_{\text {ClI }}-0.9$ | 21 | 21 | 109 | 103 | 10 | 10 |

## Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.


Figure 2-109 • AC Loading
Table 2-132 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | $\mathbf{V}_{\text {REF }}$ (Typ) (V) | $\mathbf{V}_{\mathbf{T T}}$ (Typ) (V) | $\mathbf{C}_{\text {LOAD }}$ (pF) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {REF }}-0.2$ | $\mathrm{~V}_{\text {REF }}+0.2$ | 1.5 | 1.5 | 1.485 | 30 |

Note: *Measuring point $=V_{\text {trip }}$. See Table 2-75 on page 2-128 for a complete table of trip points.
Timing Characteristics
Table 2-133 • SSTL3- Class II Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=1.5 \mathrm{~V}$

| Speed Grade | $\mathbf{t}_{\mathbf{D O U T}}$ | $\mathbf{t}_{\mathbf{D P}}$ | $\mathbf{t}_{\mathbf{D I N}}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\mathbf{E O U T}}$ | $\mathbf{t}_{\mathbf{Z L}}$ | $\mathbf{t}_{\mathbf{Z H}}$ | $\mathbf{t}_{\mathbf{L Z}}$ | $\mathbf{t}_{\mathbf{H Z}}$ | $\mathbf{t}_{\mathbf{Z L S}}$ | $\mathbf{t}_{\mathbf{Z H S}}$ | Units |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Std. | 0.66 | 2.07 | 0.04 | 1.25 | 0.43 | 2.10 | 1.67 |  |  | 4.34 | 3.91 | ns |
| -1 | 0.56 | 1.76 | 0.04 | 1.06 | 0.36 | 1.79 | 1.42 |  |  | 3.69 | 3.32 | ns |
| -2 | 0.49 | 1.54 | 0.03 | 0.93 | 0.32 | 1.57 | 1.25 |  |  | 3.24 | 2.92 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

## Fusion Family of Mixed-Signal Flash FPGAs

## Differential I/O Characteristics

Configuration of the I/O modules as a differential pair is handled by the Actel Designer software when the user instantiates a differential I/O macro in the design.
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with these standards.

## LVDS

Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one
data bit is carried through two signal lines; so two pins are needed. It also requires external resistor termination. The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-110. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation, because the output standard specifications are different.

Bourns Part Number: CAT16-LV4F12


Figure 2-110 • LVDS Circuit Diagram and Board-Level Implementation
Table 2-134 • Minimum and Maximum DC Input and Output Levels

| DC Parameter | Description | Min. | Typ. | Max. | Units |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CCI}}$ | Supply Voltage | 2.375 | 2.5 | 2.625 | V |
| $\mathrm{~V}_{\text {OL }}$ | Output Low Voltage | 0.9 | 1.075 | 1.25 | V |
| $\mathrm{~V}_{\text {OH }}$ | Output High Voltage | 1.25 | 1.425 | 1.6 | V |
| $\mathrm{~V}_{\text {I }}$ | Input Voltage | 0 |  | 2.925 | V |
| $\mathrm{~V}_{\text {ODIFF }}$ | Differential Output Voltage | 250 | 350 | 450 | mV |
| $\mathrm{V}_{\text {OCM }}$ | Output Common Mode Voltage | 1.125 | 1.25 | 1.375 | V |
| $\mathrm{~V}_{\text {ICM }}$ | Input Common Mode Voltage | 0.05 | 1.25 | 2.35 | V |
| $\mathrm{~V}_{\text {IDIFF }}$ | Input Differential Voltage | 100 | 350 |  | mV |

Notes:

1. +/- $5 \%$
2. Differential input voltage $=+/-350 \mathrm{mV}$

Table 2-135 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) $_{\text {(V) }}^{\text {V }}$ REF (Typ) (V) |  |
| :--- | :---: | :---: | :---: |
| 1.075 | 1.325 | Cross point | - |

Note: *Measuring point $=V_{\text {trip. }}$. See Table 2-75 on page 2-128 for a complete table of trip points.

## Timing Characteristics

Table 2-136 • LVDS
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=2.3 \mathrm{~V}$

| Speed Grade | $\mathbf{t}_{\text {DOUT }}$ | $\mathbf{t}_{\mathbf{D P}}$ | $\mathbf{t}_{\text {DIN }}$ | $\mathbf{t}_{\text {PY }}$ | Units |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Std. | 0.66 | 2.10 | 0.04 | 2.02 | ns |
| -1 | 0.56 | 1.79 | 0.04 | 1.72 | ns |
| -2 | 0.49 | 1.57 | 0.03 | 1.51 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

## BLVDS/M-LVDS

Bus LVDS (BLVDS) and Multi-Point LVDS (M-LVDS) specifications extend the existing LVDS standard to highperformance multi-point bus applications. Multidrop and multi-point bus configurations may contain any combination of drivers, receivers and transceivers. Actel LVDS drivers provide the higher drive current required by BLVDS and M-LVDS to accommodate the loading. The driver requires series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can
be implemented using TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multi-point designs using Actel LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-111. The input and output buffer delays are available in the LVDS section in Table 2-136.
Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst case Industrial operating conditions, at the farthest receiver: $\mathrm{R}_{\mathrm{S}}=60 \Omega$ and $\mathrm{R}_{\mathrm{T}}=70 \Omega$, given $Z_{0}=50 \Omega\left(2^{\prime \prime}\right)$ and a $Z_{\text {stub }}=50 \Omega\left(\sim 1.5^{\prime \prime}\right)$.


Figure 2-111 • BLVDS/M-LVDS Multi-Point Application Using LVDS I/O Buffers

## Fusion Family of Mixed-Signal Flash FPGAs

## LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit is carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-112. The
building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation, because the output standard specifications are different.


Figure 2-112 • LVPECL Circuit Diagram and Board-Level Implementation
Table 2-137 • Minimum and Maximum DC Input and Output Levels

| DC Parameter | Description | Min. | Max. | Min. | Max. | Min. | Max. | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CCI }}$ | Supply Voltage | 3.0 |  | 3.3 |  | 3.6 | V |  |
| $\mathrm{~V}_{\text {OL }}$ | Output Low Voltage | 0.96 | 1.27 | 1.06 | 1.43 | 1.30 | 1.57 | V |
| $\mathrm{~V}_{\text {OH }}$ | Output High Voltage | 1.8 | 2.11 | 1.92 | 2.28 | 2.13 | 2.41 | V |
| $\mathrm{~V}_{\text {IL, }} \mathrm{V}_{\text {IH }}$ | Input Low, Input High voltages | 0 | 3.3 | 0 | 3.6 | 0 | 3.9 | V |
| $\mathrm{~V}_{\text {ODIFF }}$ | Differential Output Voltage | 0.625 | 0.97 | 0.625 | 0.97 | 0.625 | 0.97 | V |
| $\mathrm{~V}_{\text {OCM }}$ | Output Common Mode Voltage | 1.762 | 1.98 | 1.762 | 1.98 | 1.762 | 1.98 | V |
| $\mathrm{~V}_{\text {ICM }}$ | Input Common Mode Voltage | 1.01 | 2.57 | 1.01 | 2.57 | 1.01 | 2.57 | V |
| $\mathrm{~V}_{\text {IDIFF }}$ | Input Differential Voltage | 300 |  | 300 |  | 300 |  | mV |

Table 2-138 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) $^{\text {V }}$ (Typ) (V) |  |
| :--- | :---: | :---: | :---: |
| 1.64 | 1.94 | Cross point | - |

Note: *Measuring point $=V_{\text {trip. }}$. See Table 2-75 on page 2-128 for a complete table of trip points.

## Timing Characteristics

Table 2-139 • LVPECL
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}$

| Speed Grade | $\mathbf{t}_{\text {DOUT }}$ | $\mathbf{t}_{\mathbf{D P}}$ | $\mathbf{t}_{\mathbf{D I N}}$ | $\mathbf{t}_{\mathbf{P Y}}$ | Units |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Std. | 0.66 | 2.14 | 0.04 | 1.75 | ns |
| -1 | 0.56 | 1.82 | 0.04 | 1.49 | ns |
| -2 | 0.49 | 1.60 | 0.03 | 1.31 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.
$\qquad$

## I/O Register Specifications

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset


Figure 2-113 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Fusion Family of Mixed-Signal Flash FPGAs

Table 2-140 • Parameter Definition and Measuring Nodes

| Parameter Name | Parameter Definition | Measuring Nodes (From, To)* |
| :---: | :---: | :---: |
| toclke | Clock-to-Q of the Output Data Register | H, DOUT |
| tosud | Data Setup time for the Output Data Register | F, H |
| $\mathrm{t}_{\text {OHD }}$ | Data Hold time for the Output Data Register | F, H |
| tosue | Enable Setup time for the Output Data Register | G, H |
| $\mathrm{t}_{\text {OHE }}$ | Enable Hold time for the Output Data Register | G, H |
| topre2Q | Asynchronous Preset-to-Q of the Output Data Register | L,DOUT |
| $\mathrm{t}_{\text {OREMPRE }}$ | Asynchronous Preset removal time for the Output Data Register | L, H |
| $\mathrm{t}_{\text {ORECPRE }}$ | Asynchronous Preset Recovery time for the Output Data Register | L, H |
| toeelka | Clock-to-Q of the Output Enable Register | H, EOUT |
| $\mathrm{t}_{\text {OESUD }}$ | Data Setup time for the Output Enable Register | J, H |
| $\mathrm{t}_{\text {OEHD }}$ | Data Hold time for the Output Enable Register | J, H |
| toesue | Enable Setup time for the Output Enable Register | K, H |
| $\mathrm{t}_{\text {Oehe }}$ | Enable Hold time for the Output Enable Register | K, H |
| $\mathrm{t}_{\text {OEPRE2Q }}$ | Asynchronous Preset-to-Q of the Output Enable Register | I, EOUT |
| $\mathrm{t}_{\text {OEREMPRE }}$ | Asynchronous Preset Removal time for the Output Enable Register | I, H |
| toerecpre | Asynchronous Preset Recovery time for the Output Enable Register | I, H |
| ticlko | Clock-to-Q of the Input Data Register | A, E |
| tISUD | Data Setup time for the Input Data Register | C, A |
| tIHD | Data Hold time for the Input Data Register | C, A |
| tISUE | Enable Setup time for the Input Data Register | B, A |
| $\mathrm{t}_{\text {IHE }}$ | Enable Hold time for the Input Data Register | B, A |
| $\mathrm{t}_{\text {PRE2Q }}$ | Asynchronous Preset-to-Q of the Input Data Register | D, E |
| $\mathrm{t}_{\text {IREMPRE }}$ | Asynchronous Preset Removal time for the Input Data Register | D, A |
| $\mathrm{t}_{\text {IRECPRE }}$ | Asynchronous Preset Recovery time for the Input Data Register | D, A |

Note: *See Figure 2-113 on page 2-157 for more information.

## Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear



Figure 2-114 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Fusion Family of Mixed-Signal Flash FPGAs

Table 2-141 • Parameter Definition and Measuring Nodes

| Parameter Name | Parameter Definition | Measuring Nodes (From, To)* |
| :---: | :---: | :---: |
| toclka | Clock-to-Q of the Output Data Register | HH, DOUT |
| tosud | Data Setup time for the Output Data Register | FF, HH |
| $\mathrm{t}_{\text {OHD }}$ | Data Hold time for the Output Data Register | FF, HH |
| tosue | Enable Setup time for the Output Data Register | GG, HH |
| $\mathrm{t}_{\text {OHE }}$ | Enable Hold time for the Output Data Register | GG, HH |
| toclR2Q | Asynchronous Clear-to-Q of the Output Data Register | LL, DOUT |
| toremCLR | Asynchronous Clear Removal time for the Output Data Register | LL, HH |
| $t_{\text {ORECCLR }}$ | Asynchronous Clear Recovery time for the Output Data Register | LL, HH |
| toeclka | Clock-to-Q of the Output Enable Register | HH, EOUT |
| toesud | Data Setup time for the Output Enable Register | JJ, HH |
| $\mathrm{t}_{\text {OEHD }}$ | Data Hold time for the Output Enable Register | JJ, HH |
| $\mathrm{t}_{\text {OESUE }}$ | Enable Setup time for the Output Enable Register | KK, HH |
| toehe | Enable Hold time for the Output Enable Register | KK, HH |
| $\mathrm{t}_{\text {OECLR2Q }}$ | Asynchronous Clear-to-Q of the Output Enable Register | II, EOUT |
| toeremclr | Asynchronous Clear Removal time for the Output Enable Register | II, HH |
| $\mathrm{t}_{\text {OERECCLR }}$ | Asynchronous Clear Recovery time for the Output Enable Register | II, HH |
| ticlika | Clock-to-Q of the Input Data Register | AA, EE |
| $t_{\text {ISUD }}$ | Data Setup time for the Input Data Register | CC, AA |
| $\mathrm{t}_{\text {H }}$ | Data Hold time for the Input Data Register | CC, AA |
| tisue | Enable Setup time for the Input Data Register | BB, AA |
| $t_{\text {IHE }}$ | Enable Hold time for the Input Data Register | BB, AA |
| $\mathrm{t}_{\text {ICLR2Q }}$ | Asynchronous Clear-to-Q of the Input Data Register | DD, EE |
| $\mathrm{t}_{\text {REMCLR }}$ | Asynchronous Clear Removal time for the Input Data Register | DD, AA |
| $t_{\text {IRECCLR }}$ | Asynchronous Clear Recovery time for the Input Data Register | DD, AA |

Note: *See Figure 2-114 on page 2-159 for more information.

Fusion Family of Mixed-Signal Flash FPGAs

## Input Register



## Figure 2-115 • Input Register Timing Diagram

## Timing Characteristics

Table 2-142 • Input Data Register Propagation Delays
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

| Parameter | Description | $\mathbf{- 2}$ | $\mathbf{- 1}$ | $\mathbf{S t d} \mathbf{l}$ | Units |
| :--- | :--- | :--- | :--- | :--- | :---: |
| $\mathrm{t}_{\text {ICLKQ }}$ | Clock-to-Q of the Input Data Register | 0.63 | 0.71 | 0.84 | ns |
| $\mathrm{t}_{\text {ISUD }}$ | Data Setup time for the Input Data Register | 0.43 | 0.49 | 0.57 | ns |
| $\mathrm{t}_{\text {IHD }}$ | Data Hold time for the Input Data Register | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {ISUE }}$ | Enable Setup time for the Input Data Register | 0.43 | 0.49 | 0.57 | ns |
| $\mathrm{t}_{\text {IHE }}$ | Enable Hold time for the Input Data Register | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {ICLR2Q }}$ | Asynchronous Clear-to-Q of the Input Data Register | 0.63 | 0.71 | 0.84 | ns |
| $\mathrm{t}_{\text {IPRE2Q }}$ | Asynchronous Preset-to-Q of the Input Data Register | 0.45 | 0.51 | 0.60 | ns |
| $\mathrm{t}_{\text {IREMCLR }}$ | Asynchronous Clear Removal time for the Input Data Register | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {IRECCLR }}$ | Asynchronous Clear Recovery time for the Input Data Register | 0.22 | 0.25 | 0.30 | ns |
| $\mathrm{t}_{\text {IREMPRE }}$ | Asynchronous Preset Removal time for the Input Data Register | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {IRECPRE }}$ | Asynchronous Preset Recovery time for the Input Data Register | 0.22 | 0.25 | 0.30 | ns |
| $\mathrm{t}_{\text {IWCLR }}$ | Asynchronous Clear Minimum Pulse Width for the Input Data Register | 0.25 | 0.28 | 0.33 | ns |
| $\mathrm{t}_{\text {IWPRE }}$ | Asynchronous Preset Minimum Pulse Width for the Input Data Register | 0.25 | 0.28 | 0.33 | ns |
| $\mathrm{t}_{\text {ICKMPWH }}$ | Clock Minimum Pulse Width High for the Input Data Register | 0.36 | 0.41 | 0.48 | ns |
| $\mathrm{t}_{\text {ICKMPWL }}$ | Clock Minimum Pulse Width Low for the Input Data Register | 0.41 | 0.46 | 0.54 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

## Output Register



## Figure 2-116 • Output Register Timing Diagram

## Timing Characteristics

Table 2-143 • Output Data Register Propagation Delays
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

| Parameter | Description | -2 | -1 | Std. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| toclko | Clock-to-Q of the Output Data Register | 0.63 | 0.71 | 0.84 | ns |
| tosud | Data Setup time for the Output Data Register | 0.43 | 0.49 | 0.57 | ns |
| $\mathrm{t}_{\text {OHD }}$ | Data Hold time for the Output Data Register | 0.00 | 0.00 | 0.00 | ns |
| tosue | Enable Setup time for the Output Data Register | 0.43 | 0.49 | 0.57 | ns |
| $\mathrm{t}_{\text {OHE }}$ | Enable Hold time for the Output Data Register | 0.00 | 0.00 | 0.00 | ns |
| toclR2Q | Asynchronous Clear-to-Q of the Output Data Register | 0.63 | 0.71 | 0.84 | ns |
| topre2Q | Asynchronous Preset-to-Q of the Output Data Register | 0.45 | 0.51 | 0.60 | ns |
| toremCLR | Asynchronous Clear Removal time for the Output Data Register | 0.00 | 0.00 | 0.00 | ns |
| torecclr | Asynchronous Clear Recovery time for the Output Data Register | 0.22 | 0.25 | 0.30 | ns |
| torempre | Asynchronous Preset Removal time for the Output Data Register | 0.00 | 0.00 | 0.00 | ns |
| torecpre | Asynchronous Preset Recovery time for the Output Data Register | 0.22 | 0.25 | 0.30 | ns |
| towCLR | Asynchronous Clear Minimum Pulse Width for the Output Data Register | 0.25 | 0.28 | 0.33 | ns |
| towpre | Asynchronous Preset Minimum Pulse Width for the Output Data Register | 0.25 | 0.28 | 0.33 | ns |
| tockMpwh | Clock Minimum Pulse Width High for the Output Data Register | 0.36 | 0.41 | 0.48 | ns |
| tockMPWL | Clock Minimum Pulse Width Low for the Output Data Register | 0.41 | 0.46 | 0.54 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

## Output Enable Register



Figure 2-117 • Output Enable Register Timing Diagram
Timing Characteristics
Table 2-144 • Output Enable Register Propagation Delays
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

| Parameter | Description | -2 | -1 | Std. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| toeclka | Clock-to-Q of the Output Enable Register | 0.63 | 0.71 | 0.84 | ns |
| toesud | Data Setup time for the Output Enable Register | 0.43 | 0.49 | 0.57 | ns |
| $\mathrm{t}_{\text {OEHD }}$ | Data Hold time for the Output Enable Register | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {OESUE }}$ | Enable Setup time for the Output Enable Register | 0.43 | 0.49 | 0.57 | ns |
| toehe | Enable Hold time for the Output Enable Register | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {OECLR2Q }}$ | Asynchronous Clear-to-Q of the Output Enable Register | 0.63 | 0.71 | 0.84 | ns |
| $\mathrm{t}_{\text {OEPRE2Q }}$ | Asynchronous Preset-to-Q of the Output Enable Register | 0.45 | 0.51 | 0.60 | ns |
| toeremclr | Asynchronous Clear Removal time for the Output Enable Register | 0.00 | 0.00 | 0.00 | ns |
| toerecclr | Asynchronous Clear Recovery time for the Output Enable Register | 0.22 | 0.25 | 0.30 | ns |
| toerempre | Asynchronous Preset Removal time for the Output Enable Register | 0.00 | 0.00 | 0.00 | ns |
| toerecpre | Asynchronous Preset Recovery time for the Output Enable Register | 0.22 | 0.25 | 0.30 | ns |
| toewclr | Asynchronous Clear Minimum Pulse Width for the Output Enable Register | 0.25 | 0.28 | 0.33 | ns |
| toewhre | Asynchronous Preset Minimum Pulse Width for the Output Enable Register | 0.25 | 0.28 | 0.33 | ns |
| $\mathrm{t}_{\text {OECKMPWH }}$ | Clock Minimum Pulse Width High for the Output Enable Register | 0.36 | 0.41 | 0.48 | ns |
| toeckmphl | Clock Minimum Pulse Width Low for the Output Enable Register | 0.41 | 0.46 | 0.54 | ns |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

## DDR Module Specifications <br> Input DDR Module



Figure 2-118 • Input DDR Timing Model
Table 2-145 • Parameter Definitions

| Parameter Name | Parameter Definition | Measuring Nodes (From, To) |
| :--- | :--- | :---: |
| $t_{\text {DDRICLKQ1 }}$ | Clock-to-Out Out_QR | B, D |
| $t_{\text {DDRICLKQ2 }}$ | Clock-to-Out Out_QF | $\mathrm{B}, \mathrm{E}$ |
| $t_{\text {DDRISUD }}$ | Data Setup time of DDR input | $\mathrm{A}, \mathrm{B}$ |
| $t_{\text {DDRIHD }}$ | Data Hold time of DDR input | $\mathrm{A}, \mathrm{B}$ |
| $t_{\text {DDRICLR2Q1 }}$ | Clear-to-Out Out_QR | $\mathrm{C}, \mathrm{D}$ |
| $t_{\text {DDRICLR2Q2 }}$ | Clear-to-Out Out_QF | $\mathrm{C}, \mathrm{E}$ |
| $t_{\text {DDRIREMCLR }}$ | Clear Removal | $\mathrm{C}, \mathrm{B}$ |
| $t_{\text {DDRIRECCLR }}$ | Clear Recovery | $\mathrm{C}, \mathrm{B}$ |



Figure 2-119 • Input DDR Timing Diagram

## Timing Characteristics

Table 2-146 • Input DDR Propagation Delays Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

| Parameter | Description | -2 | -1 | Std. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {DDRICLKQ1 }}$ | Clock-to-Out Out_QR for Input DDR | 0.63 | 0.71 | 0.84 | ns |
| $\mathrm{t}_{\text {DDRICLKQ2 }}$ | Clock-to-Out Out_QF for Input DDR | 0.57 | 0.65 | 0.76 | ns |
| $t_{\text {DDRISUD }}$ | Data Setup for Input DDR | 0.53 | 0.61 | 0.71 | ns |
| $t_{\text {DDRIHD }}$ | Data Hold for Input DDR | 0.00 | 0.00 | 0.00 | ns |
| t DDRICLR2Q1 | Asynchronous Clear to Out Out_QR for Input DDR | 0.57 | 0.65 | 0.76 | ns |
| t ${ }_{\text {dDRICLR2Q2 }}$ | Asynchronous Clear-to-Out Out_QF for Input DDR | 0.57 | 0.65 | 0.76 | ns |
| t DDRIREMCLR | Asynchronous Clear Removal time for Input DDR | 0.00 | 0.00 | 0.00 | ns |
| $t_{\text {DDRIRECCLR }}$ | Asynchronous Clear Recovery time for Input DDR | 0.22 | 0.25 | 0.30 | ns |
| $\mathrm{t}_{\text {DDRIWCLR }}$ | Asynchronous Clear Minimum Pulse Width for Input DDR |  |  |  | ns |
| $\mathrm{t}_{\text {DDRICKMPWH }}$ | Clock Minimum Pulse Width High for Input DDR |  |  |  | ns |
| $t_{\text {DDRICKMPWL }}$ | Clock Minimum Pulse Width Low for Input DDR |  |  |  | ns |
| F ${ }_{\text {DDRIMAX }}$ | Maximum Frequency for Input DDR |  |  |  | MHz |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

## Output DDR



Figure 2-120 • Output DDR Timing Model
Table 2-147 • Parameter Definitions

| Parameter Name | Parameter Definition | Measuring Nodes (From, To) |
| :--- | :--- | :---: |
| $t_{\text {DDROCLKQ }}$ | Clock-to-Out | B, E |
| $t_{\text {DDROCLR2Q }}$ | Asynchronous Clear-to-Out | C, E |
| $t_{\text {DDROREMCLR }}$ | Clear Removal | C, B |
| $t_{\text {DDRORECCLR }}$ | Clear Recovery | C, B |
| $t_{\text {DDROSUD1 }}$ | Data Setup Data_F | A, B |
| $t_{\text {DDROSUD2 }}$ | Data Setup Data_R | D, B |
| $t_{\text {DDROHD1 }}$ | Data Hold Data_F | A, B |
| $t_{\text {DDROHD2 }}$ | Data Hold Data_R | D, B |

$\qquad$


## Figure 2-121 • Output DDR Timing Diagram

## Timing Characteristics

Table 2-148 • Output DDR Propagation Delays
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

| Parameter | Description | -2 | -1 | Std. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{\text {DDROCLKQ }}$ | Clock-to-Out of DDR for Output DDR | 0.63 | 0.71 | 0.84 | ns |
| t DDROSUD1 | Data_F Data Setup for Output DDR | 0.43 | 0.49 | 0.57 | ns |
| $t_{\text {DDROSUD2 }}$ | Data_R Data Setup for Output DDR | 0.43 | 0.49 | 0.57 | ns |
| t ${ }_{\text {DDROHD1 }}$ | Data_F Data Hold for Output DDR | 0.00 | 0.00 | 0.00 | ns |
| t ${ }_{\text {DDROHD2 }}$ | Data_R Data Hold for Output DDR | 0.00 | 0.00 | 0.00 | ns |
| $\mathrm{t}_{\text {DDROCLR2Q }}$ | Asynchronous Clear-to-Out for Output DDR | 0.57 | 0.65 | 0.76 | ns |
| t ${ }_{\text {DDROREMCLR }}$ | Asynchronous Clear Removal time for Output DDR | 0.00 | 0.00 | 0.00 | ns |
| t ${ }_{\text {dDRORECCLR }}$ | Asynchronous Clear Recovery time for Output DDR | 0.22 | 0.25 | 0.30 | ns |
| t ${ }_{\text {DDROWCLR1 }}$ | Asynchronous Clear Minimum Pulse Width for Output DDR |  |  |  | ns |
| $\mathrm{t}_{\text {DDROCKMPWH }}$ | Clock Minimum Pulse Width High for the Output DDR |  |  |  | ns |
| $\mathrm{t}_{\text {DDROCKMPWL }}$ | Clock Minimum Pulse Width Low for the Output DDR |  |  |  | ns |
| F ${ }_{\text {DDOMAX }}$ | Maximum Frequency for the Output DDR |  |  |  | MHz |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.

## Pin Descriptions

## Supply Pins

## GND Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

## GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package, and improves input signal integrity. GNDQ needs to always be connected on the board to GND.

## ADCGNDREF Analog Reference Ground

Analog ground reference used by the ADC. This pad should be connected to a quiet analog ground.

## GNDA <br> Ground (analog)

Quiet ground supply voltage to the Analog Block of the Fusion devices. The use of a separate analog ground helps isolate the analog functionality of the Fusion device from any digital switching noise.

## GNDAQ <br> Ground (analog quiet)

Quiet ground supply voltage to the analog I/O of the Fusion devices. The use of a separate analog ground helps isolate the analog functionality of the Fusion device from any digital switching noise.

## GNDNVM Flash Memory Ground

Ground supply used by the Fusion device's Flash memory block module(s).

## GNDOSC

## Oscillator Ground

Ground supply for both integrated RC oscillator and crystal oscillator circuit.

## $\mathbf{V C C 1 5 A} \quad$ Analog Power Supply (1.5 V)

1.5 V clean analog power supply input for use by the 1.5 V portion of the analog circuitry.
$\mathbf{V}_{\text {CC33A }}$
Analog Power Supply (3.3 V)
3.3 V clean analog power supply input for use by the 3.3 V portion of the analog circuitry.
$\mathbf{V}_{\text {cC33N }} \quad$ Negative 3.3 V output
VOLTAGE CONVERTER OUTPUT is the -3.3 V output from the voltage converter. A $2.2 \mu \mathrm{~F}$ capacitor must be connected from this pin to ground.

## $\mathbf{V}_{\text {Cc33PMP }} \quad$ Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the analog charge pump. To avoid high current draw, $V_{\text {CC33PMP }}$ should be powered up before or simultaneously with $\mathrm{V}_{\text {CC33A }}$.

## Vccnvm Flash Memory Block Power Supply (1.5 V)

1.5 V power supply used by the Fusion device's Flash memory block module(s). To avoid high current draw $\mathrm{V}_{\mathrm{Cc}}$ should be powered up before or simultaneously with $V_{\text {CCNVM }}$.
Vccosc Oscillator Power Supply (3.3 V)
Power supply for both integrated RC oscillator and crystal oscillator circuit.

## $\mathbf{V}_{\text {cc }} \quad$ Core Supply Voltage

Supply voltage to the FPGA core, nominal $1.5 \mathrm{~V} . \mathrm{V}_{\mathrm{CC}}$ is also required for powering the JTAG state machine in addition to $\mathrm{V}_{\text {JTAG }}$. Even when a Fusion device is in bypass mode in a JTAG chain of interconnected devices, both $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\text {JTAG }}$ must remain powered to allow JTAG signals to pass through the Fusion device.

## VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. $B x$ is the I/O bank number. There are either 4 (AFS090 and AFS250) or 5 (AFS600 and AFS1500) I/O banks on the Fusion devices plus a dedicated $V_{\text {JTAG }}$ bank. Each bank can have a separate $\mathrm{V}_{\mathrm{CCI}}$ connection. All I/Os in a bank will run off the same $\mathrm{V}_{\mathrm{ClI}} \mathrm{Bx}$ supply. $\mathrm{V}_{\mathrm{CCI}}$ can be $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or 3.3 V nominal voltage. Unused I/O banks should have their corresponding $\mathrm{V}_{\mathrm{CCI}}$ pins tied to GND.

## VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. $X$ is the bank number. Within the package, the VMV plane is decoupled from the simultaneous switching noise originated from the output buffer $\mathrm{V}_{\mathrm{CCI}}$ domain. This minimizes the noise transfer within the package, and improves input signal integrity. Each bank must have at least one VMV connection. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or 3.3 V nominal voltage. Unused I/O banks should have their corresponding VMV and $\mathrm{V}_{\mathrm{CCI}}$ pins tied to GND. VMV and $\mathrm{V}_{\mathrm{CCI}}$ must be connected to the same power supply and $\mathrm{V}_{\mathrm{ClI}}$ pins within a given I/O bank. Used VMV pins must be connected to the corresponding $\mathrm{V}_{\mathrm{CCI}}$ pins of the same bank (i.e., VMV0 to $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 0, \mathrm{VMV1}$ to $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$, etc.).

## $\mathbf{V}_{\text {CCPLA/B }} \quad$ PLL Supply Voltage

Supply voltage to analog PLL, nominal 1.5 V , where A and B refer to the PLL. The AFS090 and AFS250 each have a single PLL. The AFS600 and AFS1500 devices each have two PLLs. If unused, $\mathrm{V}_{\text {CCPLA/B }}$ should be tied to GND.

## $\mathbf{V}_{\text {COMPLF }} \quad$ PLL Ground8

Ground to analog PLL, where $A$ and $B$ refer to the PLL. The AFS090 and AFS250 each have a single PLL. The AFS600 and AFS1500 devices each have two PLLs. Unused $V_{\text {COMPLF }}$ pin should be connected to GND.

## VJTAG JTAG Supply Voltage

Fusion devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility with supply selection and simplifies power supply and printed circuit board design. If the JTAG interface is not used nor planned to be used, the $\mathrm{V}_{\text {JTAG }}$ pin together with the TRST pin could be tied to GND. It should be noted that $V_{C C}$ is required to be powered for JTAG operation; $\mathrm{V}_{\text {JTAG }}$ alone is insufficient. If a Fusion device is in a JTAG chain of interconnected boards, and it is desired to power down the board containing the Fusion device, this may be done provided both $\mathrm{V}_{\text {JTAG }}$ and $\mathrm{V}_{\mathrm{CC}}$ to the Fusion part remain powered; otherwise, JTAG signals will not be able to transition the Fusion device, even in bypass mode.

## VPUMP Programming Supply Voltage

Fusion devices support single-voltage ISP programming of the configuration Flash and FlashROM. For programming, $\mathrm{V}_{\text {PUMP }}$ should be 3.3 V nominal. During normal device operation, $\mathrm{V}_{\text {PUMP }}$ can be left floating or can be tied (pulled up) to any voltage between 0 V and 3.6 V .

## User-Defined Supply Pins

## $\mathbf{V}_{\text {REF }}$ <br> I/O Voltage Reference

Reference voltage for I/O minibanks. Both the AFS600 (north bank only) and AFS1500 (all digital I/O banks) support Actel Pro I/O. These I/O banks support voltage reference standard I/O. The $\mathrm{V}_{\mathrm{REF}}$ pins are configured by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, which can be designated as the voltage reference I/O. Only certain I/O standards require a voltage reference - HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and GTL/GTL+. One V REF pin can support the number of I/Os available in its minibank.

## VAREF Analog Reference Voltage

Analog reference voltage to be used by analog to digital converter. The Fusion device provides a 2.56 V internal reference voltage that can be used by the ADC. Optionally this voltage can be configured to be brought
out on this pin for use by the system. The pin in this can would either open or 2.56 V output.
If a different reference voltage is required, it can be supplied on this pin and used by the ADC. The valid range of values that can be supplied to the ADC is between 1.0 V and 3.3 V .

## User Pins

## I/O

## User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected. Unused I/O pins are configured as inputs with pull-up resistors.
During programming, I/Os become tristated and weakly pulled up to $\mathrm{V}_{\mathrm{CCl}}$. With $\mathrm{V}_{\mathrm{CCl}}$, VMV and $\mathrm{V}_{\mathrm{CC}}$ supplies continuously powered-up, and the device transitions from programming to operating mode, the I/Os get instantly configured to the desired user configuration.

## Axy

## Analog Input/Output

Analog I/O pin where $x$ is the analog pad type ( $\mathrm{C}=$ current pad, $\mathrm{G}=$ Gate driver pad, $\mathrm{T}=$ Temperature pad, $\mathrm{V}=$ Voltage pad) and y is the Analog Quad number (0 to 9).

## ATRTNx Temperature Monitor Return

AT RETURN are the returns for the temperature sensors. The cathode terminal of the external diodes should be connected to these pins. There is 1 analog return pin for every two analog quads. The $x$ in the ATRTNx designator indicates the quad pairing ( $x=0$ for AQ1 and AQ2, $x=1$ for AQ2 and AQ3..., $x=4$ for AQ8 and AQ9). These signals that drive these pins are called out as ATRETUNxy in the software (where $x$ and $y$ refer to the quads that share the return signal).

## GL

## Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as Pro I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors. See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits" section on page 2-22.
Refer to the "User I/O Naming Convention" section on page 2-120 for a description of naming of global pins.

## JTAG Pins

Fusion devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). $\mathrm{V}_{\mathrm{Cc}}$ must also be powered in order for the JTAG state machine to operate even if the
device is in bypass mode; $\mathrm{V}_{\text {JTAG }}$ alone is insufficient. Both $\mathrm{V}_{\text {JTAG }}$ and $\mathrm{V}_{\mathrm{CC}}$ to the Fusion part must be supplied to allow JTAG signals to transition the Fusion device. Isolating the JTAG power supply.
in a separate I/O bank gives greater flexibility with supply selection and simplifies power supply and printed circuit board design. If the JTAG interface is not used nor planned to be used, the $V_{\text {JTAG }}$ pin together with the TRST pin could be tied to GND.

## TCK

## Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/down resistor. If JTAG is not used, Actel recommends tying off TCK to GND or VJTAG through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.
Note that to operate at all $\mathrm{V}_{\text {JTAG }}$ voltages, $500 \Omega$ to $1 \mathrm{k} \Omega$ will satisfy the requirements. Refer to Table 2-149 for more information.

Table 2-149 • Recommended Tie-Off Values for the TCK and TRST Pins

| $\mathbf{V}_{\text {JTAG }}$ | Tie Off Resistance ${ }^{\mathbf{2 , 3}}$ |
| :--- | :---: |
| $\mathrm{V}_{\text {JTAG }}$ at 3.3 V | $200 \Omega$ to $1 \mathrm{k} \Omega$ |
| $\mathrm{V}_{\text {JTAG }}$ at 2.5 V | $200 \Omega$ to $1 \mathrm{k} \Omega$ |
| $\mathrm{V}_{\text {JTAG }}$ at 1.8 V | $500 \Omega$ to $1 \mathrm{k} \Omega$ |
| $\mathrm{V}_{\text {JTAG }}$ at 1.5 V | $500 \Omega$ to $1 \mathrm{k} \Omega$ |

## Notes:

1. Equivalent parallel resistance if more than one device is on JTAG chain.
2. The TCK pin can be pulled-up/down.
3. The TRST pin can only be pulled-down.

Note that to operate at all $\mathrm{V}_{\text {JTAG }}$ voltages, $500 \Omega$ to $1 \mathrm{k} \Omega$ will satisfy the requirements.

## TDI Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO

## Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

## TMS

## Test Mode Select

The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK,TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

## TRST

## Boundary Scan Reset Pin

The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan
circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the TAP is held in reset mode. The resistor values must be chosen from Table 2-149 and must satisfy the parallel resistance value requirement. The values in Table 2-149 correspond to the resistor recommended when a single device is used and to the equivalent parallel resistor when multiple devices are connected via a JTAG chain.
In critical applications, an upset in the JTAG circuit could allow entering an undesired JTAG state. In such cases, Actel recommends tying off TRST to GND through a resistor placed close to the FPGA pin.
Note that to operate at all $\mathrm{V}_{\text {JTAG }}$ voltages, $500 \Omega$ to $1 \mathrm{k} \Omega$ will satisfy the requirements.

## Special Function Pins

## NC No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

## DC

## Don't Connect

This pin should not be connected to any signals on the printed circuit board (PCB). These pins should be left unconnected.

## NCAP

Negative Capacitor
NEGATIVE CAPACITOR is where the negative terminal of the charge pump capacitor is connected.

## PCAP Positive Capacitor

POSITIVE CAPACITOR is where the positive terminal of the charge pump capacitor is connected.

## PUB Power Up Bar

PUSH BUTTON is the connection for the external momentary switch which is used to turn on the 1.5 V voltage regulator and can be floating if not used.

## PTBASE Pass Transistor Base

PASS TRANSISTOR BASE is the control signal of the voltage regulator. This pin should be connected to the base of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if not used.

## PTEM <br> Pass Transistor Emitter

PASS TRANSISTOR EMITTER is the feedback input of the voltage regulator.
This pin should be connected to the Emitter of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if not used.

## $\mathbf{V}_{\text {cС33ACAP }} \quad$ Analog Power Filter

Analog power pin for the analog power supply low pass filter. An external $1 \mu \mathrm{~F}$ capacitor should be connected between this pin and ground.

## XTAL1

## Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or external clock input. When using an external crystal or ceramic oscillator external capacitors are also recommended ( $<2 \mathrm{MHz} 100 \mathrm{pF}$, $>2 \mathrm{MHz}-15 \mathrm{pF}$ ).
If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected.

## XTAL2 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or external clock input. When using an external crystal or ceramic oscillator external capacitors are also recommended ( $<2 \mathrm{MHz} 100 \mathrm{pF}$, >2 MHz - 15 pF ).
If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected.

## Software Tools and Programming

## Overview of Tools Flow

The Fusion family of FPGAs is fully supported by both Actel Libero IDE and Designer FPGA Development software. Actel Libero IDE is an integrated design manager that seamlessly integrates design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment (see the Libero IDE flow diagram located on the Actel website). Libero IDE includes Synplify ${ }^{\circledR}$ AE from Synplicity ${ }^{\circledR}$, ViewDraw ${ }^{\circledR}$ AE from Mentor Graphics ${ }^{\circledR}$, ModelSim ${ }^{\circledR}$ HDL Simulator from Mentor Graphics, WaveFormer Lite ${ }^{\text {TM }}$ AE from SynaptiCAD ${ }^{\circledR}$, PALACE ${ }^{\text {TM }}$ AE Physical Synthesis from Magma Design Automation ${ }^{\top M}$, and Designer software from Actel.
Actel Designer software is a place-and-route tool and provides a comprehensive suite of back-end support tools for FPGA development. The Designer software includes the following:

- SmartTime - a world-class integrated static timing analyzer and constraints editor that supports timing-driven place-and-route
- NetlistViewer - a design netlist schematic viewer
- ChipPlanner - a graphical floorplanning viewer and editor
- SmartPower - a sophisticated power analysis environment that gives designers the ability to quickly determine the power consumption of an FPGA or its components
- PinEditor - a graphical application for editing pin assignments and I/O attributes
- I/O Attribute Editor - displays all assigned and unassigned I/O macros and their attributes in a spreadsheet format
With the Designer software, a user can lock the design pins before layout while minimally impacting the results of place-and-route. Additionally, the Actel backannotation flow is compatible with all the major simulators. Included in the Designer software is SmartGen core generator, which easily creates commonly used logic functions for implementation into your Fusion-based schematic or HDL design.
Actel Designer software is compatible with the most popular FPGA design entry and verification tools from EDA vendors, such as Cadence ${ }^{\circledR}$, Magma ${ }^{\circledR}$, Mentor Graphics, Synopsys, and Synplicity. The Designer software is available for both the Windows ${ }^{\circledR}$ and UNIX operating systems.


## CoreMP7 Software Tools

CoreConsole is the Intellectual Property Deployment Platform (IDP) that assists the developer in programming the soft ARM (CoreMP7) core onto M7 Fusion devices. CoreConsole provides the seamless environment to work with Libero IDE and Designer FPGA development software tools concurrently.

## Security

Fusion devices have a built-in 128-bit AES decryption core. The decryption core facilitates secure, in-system programming of the FPGA core array fabric and the FlashROM. The FlashROM and the FPGA core fabric can be programmed independently from each other, allowing the FlashROM to be updated without the need for change to the FPGA core fabric. The AES master key is stored in on-chip nonvolatile memory (Flash). The AES master key can be preloaded into parts in a secure programming environment (such as the Actel in-house programming center) and then "blank" parts can be shipped to an untrusted programming or manufacturing center for final personalization with an AES encrypted bitstream. Late stage product changes or personalization can be implemented easily and securely by simply sending a STAPL file with AES encrypted data. Secure remote field updates over public networks (such as the Internet) are possible by sending and programming a STAPL file with AES encrypted data. For more information, refer to the Fusion Security application note.

## 128-Bit AES Decryption

The 128-bit AES standard (FIPS-192) block cipher is the National Institute of Standards and Technology (NIST) replacement for the DES (Data Encryption Standard FIPS46-2). AES has been designed to protect sensitive government information well into the 21st century. It replaces the aging DES, which NIST adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect sensitive, unclassified information. The 128 -bit AES standard has $3.4 \times 10^{38}$ possible 128 -bit key variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text using exhaustive techniques. Keys are stored (securely) in Fusion devices in nonvolatile Flash memory. All programming files sent to the device can be authenticated by the part prior to programming to ensure that bad programming data is not loaded into the part that may possibly damage it. All programming verification is performed on-chip, ensuring that the contents of Fusion devices remain secure.
AES decryption can also be used on the 1,024-bit FlashROM to allow for secure remote updates of the FlashROM contents. This allows for easy, secure support for subscription model products.

## AES for Flash Memory

AES decryption can also be used on the Flash memory blocks. This allows for the secure update of the Flash memory blocks. During runtime, the encrypted data can be clocked in via the JTAG interface. The data can be passed through the internal AES decryption engine, the decrypted data can then be stored in the Flash memory block.

## Programming

Programming can be performed using various programming tools, such as Silicon Sculptor II (BP Micro Systems) or FlashPro3 (Actel).
The user can generate *.stp programming files from the Designer software and can use these files to program a device.
Fusion devices can be programmed in system.

## ISP

Fusion devices support IEEE 1532 ISP via JTAG and require a single $\mathrm{V}_{\text {PUMP }}$ voltage of 3.3 V during programming. In addition, programming via a Microcontroller (MCU) in a target system can be achieved.

## JTAG IEEE 1532

## Programming with IEEE 1532

Fusion devices support the JTAG-based IEEE1532 standard for ISP. As part of this support, when a Fusion device is in an
unprogrammed state, all user I/O pins are disabled. This is achieved by keeping the global IO_EN signal deactivated, which also has the effect of disabling the input buffers. Consequently, the SAMPLE instruction will have no effect while the Fusion device is in this unprogrammed statedifferent behavior from that of the ProASIC ${ }^{\text {PLUS } ®}$ device family. This is done because SAMPLE is defined in the IEEE1532 specification as a noninvasive instruction. If the input buffers were to be enabled by SAMPLE temporarily turning on the I/Os, then it would not truly be a noninvasive instruction.

## Boundary Scan

Fusion devices are compatible with IEEE Standard 1149.1, which defines a hardware architecture and the set of mechanisms for boundary scan testing. The basic Fusion boundary scan logic circuit is composed of the test access port (TAP) controller, test data registers, and instruction register (Figure 2-122 on page 2-173). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS) and the optional IDCODE instruction (Table 2-151 on page 2-173).
Each test section is accessed through the TAP, which has five associated pins: TCK (test clock input), TDI, TDO (test data input and output), TMS (test mode selector), and TRST (test reset input). TMS, TDI, and TRST are equipped with pull-up resistors to ensure proper operation when no input data is supplied to them. These pins are dedicated for boundary scan test usage. Refer to the "JTAG Pins" section on page 2-169 for pull-up/down recommendations for TDO and TCK pins. The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 2-122 on page 2-173. The 1s and 0 s represent the values that must be present at TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state.

Table 2-150 • TRST and TCK Pull-Down Recommendations

| $\mathbf{V}_{\text {JTAG }}$ | Tie-off Resistance* |
| :--- | :---: |
| $\mathrm{V}_{\text {JTAG }}$ at 3.3 V | $200 \Omega$ to $1 \mathrm{k} \Omega$ |
| $\mathrm{V}_{\text {JTAG }}$ at 2.5 V | $200 \Omega$ to $1 \mathrm{k} \Omega$ |
| $\mathrm{V}_{\text {JTAG }}$ at 1.8 V | $500 \Omega$ to $1 \mathrm{k} \Omega$ |
| $\mathrm{V}_{\text {JTAG }}$ at 1.5 V | $500 \Omega$ to $1 \mathrm{k} \Omega$ |

Note: *Equivalent parallel resistance if more than one device is on JTAG chain.

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain high for five TCK cycles. The TRST pin may also be used to asynchronously place the TAP controller in the Test-Logic-Reset state.
$\qquad$

Fusion devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register cells, each with a serial-in, serial-out, parallel-in, and parallel-out pin.

The serial pins are used to serially connect all the boundary scan register cells in a device into a boundary scan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are connected to the internal core logic I/O tile and the input, output, and control ports of an I/O buffer to capture and load data into the register to control or observe the logic state of each I/O.


Figure 2-122 • Boundary Scan Chain in Fusion
Table 2-151 • Boundary Scan Opcodes

|  | Hex Opcode |
| :--- | :---: |
| EXTEST | 00 |
| HIGHZ | 07 |
| USERCODE | $0 E$ |
| SAMPLE/PRELOAD | 01 |
| IDCODE | $0 F$ |
| CLAMP | 05 |
| BYPASS | FF |

## Fusion Family of Mixed-Signal Flash FPGAs

## IEEE 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected, refer to the I/O Timing characteristics for more details.

Table 2-152 • JTAG 1532
Commercial Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

| Parameter | Description | $\mathbf{- 2}$ | $\mathbf{- 1}$ | Std. | Units |
| :--- | :--- | :--- | :--- | :---: | :---: |
| $\mathrm{t}_{\text {DISU }}$ | Test Data Input Setup Time |  |  |  | ns |
| $\mathrm{t}_{\text {DIHD }}$ | Test Data Input Hold Time |  |  | ns |  |
| $\mathrm{t}_{\text {TMSSU }}$ | Test Mode Select Setup Time |  |  | ns |  |
| $\mathrm{t}_{\text {TMDHD }}$ | Test Mode Select Hold Time |  |  | ns |  |
| $\mathrm{t}_{\text {TCK2Q }}$ | Clock to Q (Data Out) |  |  | ns |  |
| $\mathrm{t}_{\text {RSTB2Q }}$ | Reset to Q (Data Out) |  |  | ns |  |
| $\mathrm{F}_{\text {TCKMAX }}$ | TCK maximum frequency |  |  | n |  |
| $\mathrm{t}_{\text {TRSTREM }}$ | ResetB Removal time |  |  | 20 | ns |
| $\mathrm{t}_{\text {TRSTREC }}$ | ResetB Recovery time |  |  | ns |  |
| $\mathrm{t}_{\text {TRSTMPW }}$ | ResetB minimum pulse |  |  | ns |  |

Note: For the derating values at specific junction-temperature and voltage-supply levels, refer to Table 3-7 on page 3-7.
$\qquad$

## DC and Power Characteristics

## General Specifications

DC and switching characteristics for $-F$ speed grade targets are based only on simulation.
The characteristics provided for $-F$ speed grade are subject to change after establishing FPGA specifications. Some restrictions might be added and will be reflected in future revisions of this document. The -F speed grade is only supported in the commercial temperature range.

## Operating Conditions

Stresses beyond those listed in the Table 3-1 may cause permanent damage to the device.
Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating ranges specified in Table 3-2 on page 3-2.

Table 3-1 • Absolute Maximum Ratings

| Symbol | Parameter | Limits | Units |
| :--- | :--- | :--- | :---: |
| $V_{\text {CC }}$ | DC core supply voltage | -0.3 to 1.65 | V |
| $\mathrm{~V}_{\text {JTAG }}$ | JTAG DC voltage | -0.3 to 3.75 | V |
| $\mathrm{~V}_{\text {PUMP }}$ | Programming voltage | -0.3 to 3.75 | V |
| $\mathrm{~V}_{\text {CCPLL }}$ | Analog power supply (PLL) | -0.3 to 1.65 | V |
| $\mathrm{~V}_{\text {CCI }}$ | DC I/O output buffer supply voltage | -0.3 to 3.75 | V |
| VMV | DC I/O input buffer supply voltage | -0.3 to 3.75 | V |
| VI | I/O input voltage | -0.3 V to $3.6 \mathrm{~V} \mathrm{(when} \mathrm{I/O} \mathrm{hot} \mathrm{insertion} \mathrm{mode} \mathrm{is} \mathrm{enabled)}$ <br> I/O hot-insertion mode is disabled) | V |
| $\mathrm{V}_{\text {CC33A }}$ | (+3.3 V) power supply | -0.3 to 3.75 |  |
| VAREF | Voltage reference for ADC | 1.0 to 3.75 | V |
| $\mathrm{~V}_{\text {CC15A }}$ | Digital Power supply for the analog system | -0.3 to 1.65 | V |
| $\mathrm{~V}_{\text {CCNVM }}$ | Embedded Flash power supply | -0.3 to 1.65 | V |
| $\mathrm{~V}_{\text {CCOSC }}$ | Oscillator power supply | -0.3 to 3.75 | V |

## Notes:

1. Device performance is not guaranteed if storage temperature exceeds $110^{\circ} \mathrm{C}$.
2. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 3-4 on page 3-3.

Fusion Family of Mixed-Signal Flash FPGAs

Table 3-2 • Recommended Operating Conditions


## Notes:

1. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-73 on page 2-126. VMV and $V_{C C I}$ must be connected to the same power supply and $V_{C C I}$ pins within a given I/O bank.
2. All parameters representing voltages are measured with respect to GND unless otherwise specified.
3. $V_{\text {PUMP }}$ can be left floating during normal operation (not programming mode).

Table 3-3 • Required Conditions to Avoid Stress on Analog Input Pads

| Pads | Pad Configuration | Polarity | Prescaler Range | Input Resistance to Ground |
| :---: | :---: | :---: | :---: | :---: |
| AV, AC | Direct input* | Positive | $16 \mathrm{~V}, 8 \mathrm{~V}, 4 \mathrm{~V}, 2 \mathrm{~V}$ | $1 \mathrm{M} \Omega$ (typ) |
|  |  |  | $1 \mathrm{~V}, 0.5 \mathrm{~V}, 0.25 \mathrm{~V}, 0.125 \mathrm{~V}$ | $>10 \mathrm{M} \Omega$ |
|  | Postive Prescaler | Positive | $16 \mathrm{~V}, 8 \mathrm{~V}, 4 \mathrm{~V}, 2 \mathrm{~V}$ | $1 \mathrm{M} \Omega$ (typ) |
|  |  |  | $1 \mathrm{~V}, 0.5 \mathrm{~V}, 0.25 \mathrm{~V}, 0.125 \mathrm{~V}$ | $>10 \mathrm{M} \Omega$ |
|  | Negative Prescaler | Negative | $16 \mathrm{~V}, 8 \mathrm{~V}, 4 \mathrm{~V}, 2 \mathrm{~V}$ | $1 \mathrm{M} \Omega$ (typ) |
|  |  |  | $1 \mathrm{~V}, 0.5 \mathrm{~V}, 0.25 \mathrm{~V}, 0.125 \mathrm{~V}$ | $>10 \mathrm{M} \Omega$ |
|  | Digital input | Positive | $16 \mathrm{~V}, 8 \mathrm{~V}, 4 \mathrm{~V}, 2 \mathrm{~V}$ | $1 \mathrm{M} \Omega$ (typ) |
|  | Positive Current Monitor | Positive | $16 \mathrm{~V}, 8 \mathrm{~V}, 4 \mathrm{~V}, 2 \mathrm{~V}$ | $1 \mathrm{M} \Omega$ (typ) |
|  | Negative Current Monitor | Negative | $16 \mathrm{~V}, 8 \mathrm{~V}, 4 \mathrm{~V}, 2 \mathrm{~V}$ | $1 \mathrm{M} \Omega$ (typ) |
| AT | Direct input | Positive | $16 \mathrm{~V}, 4 \mathrm{~V}$ | $1 \mathrm{M} \Omega$ (typ) |
|  | Postive Prescaler | Positive | $16 \mathrm{~V}, 4 \mathrm{~V}$ | $1 \mathrm{M} \Omega$ (typ) |
|  | Digital input | Positive | $16 \mathrm{~V}, 4 \mathrm{~V}$ | $1 \mathrm{M} \Omega$ (typ) |
|  | Temprature Monitor | Positive | $16 \mathrm{~V}, 4 \mathrm{~V}$ | $>10 \mathrm{M} \Omega$ |

Note: *AFS600 should always use high prescaler ranges in Direct input mode.

Fusion Family of Mixed-Signal Flash FPGAs

Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os) ${ }^{1}$

| $\mathbf{V}_{\mathbf{C C I}}$ and VMV | Average $\mathbf{V C l}_{\mathbf{C l}}$ GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ${ }^{2}$ | Maximum Overshoot/ Undershoot ${ }^{\mathbf{2}}$ |
| :---: | :---: | :---: |
| 2.7 V or less | 10\% | 1.4 V |
|  | 5\% | 1.49 V |
| 3.0 V | 10\% | 1.1 V |
|  | 5\% | 1.19 V |
| 3.3 V | 10\% | 0.79 V |
|  | 5\% | 0.88 V |
| 3.6 V | 10\% | 0.45 V |
|  | 5\% | 0.54 V |

## Notes:

1. Based on reliability requirements at $85^{\circ} \mathrm{C}$.
2. The duration is allowed at one cycle out of six clock cycles (estimated SSO density over cycles). If the overshoot/undershoot occurs at 1 out of 2 cycles, then the maximum overshoot/undershoot has to be reduced by 0.15 V .

Table 3-5 • FPGA Programming, Storage, and Operating Limits

| Products | Grade Programming Cycles | Program Retention | Storage Temperature |  | Maximum Operating Junction |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Max. | Temperature $\mathrm{T}_{\mathbf{J}}\left({ }^{\circ} \mathrm{C}\right)$ |
| Commercial | 500 | 20 years | 0 | 110 | 110 |
|  | 1 k | 20 years | 0 | 110 | 110 |
|  | 15 k | 5 years | 0 | 110 | 110 |
| Industrial | 500 | 20 years | -40 | 110 | 110 |
|  | 1 k | 20 years | -40 | 110 | 110 |
|  | 15 k | 5 years | -40 | 110 | 110 |

Note: This is a stress rating only. Functional operation at any other condition other than those indicated is not implied.

## I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every Fusion device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power-up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 3-1.
There are five regions to consider during power-up.
Fusion I/Os are activated only if ALL of the following three conditions are met:

1. $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{CCI}}$ are above the minimum specified trip points (Figure 3-1).
2. $\mathrm{V}_{\mathrm{CCI}}>\mathrm{V}_{\mathrm{CC}}-0.75 \mathrm{~V}$ (Typical).
3. Chip is in the operating mode.

## $\mathbf{V}_{\text {cla }}$ Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.2 V
$\mathbf{V}_{\text {cc }}$ Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.1 V
Ramping down: 0.5 V < trip_point_down < 1 V
$\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{CCI}}$ ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to $\mathrm{V}_{\mathrm{CCl}}$.
- JTAG supply, PLL power supplies, and charge pump $V_{\text {PUMP }}$ supply have no influence on I/O behavior.


## Internal Power-Up Activation Sequence

1. Core
2. Input buffers
3. Output buffers, after 200 ns delay from input buffer activation.

Ramping down: 0.5 V < trip_point_down < 1.1 V


[^6]$\qquad$

## Thermal Characteristics

## Introduction

The temperature variable in the Actel Designer software refers to the junction temperature, not the ambient, case, or board temperatures. This is an important distinction because dynamic and static power consumption will cause the chip's junction temperature to be higher than the ambient, case, or board temperatures. EQ 3-1 and EQ 3-3 give the relationship between thermal resistance, temperature gradient, and power.

$$
\theta_{J A}=\frac{T_{J}-\theta_{A}}{P}
$$

EQ 3-1

$$
\theta_{\mathrm{JB}}=\frac{T_{J}-T_{B}}{P}
$$

$$
\theta_{\mathrm{JC}}=\frac{T_{J}-T_{C}}{P}
$$

EQ 3-3
Table 3-6 • Package Thermal Resistance

| Product | $\theta_{\mathbf{J A}}$ |  |  | $\theta_{\mathbf{J c}}$ | $\theta_{\text {JB }}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Still Air | 1.0 m/s | 2.5 m/s |  |  |  |
| AFS090-QN108 | TBD | TBD | TBD | TBD | TBD | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| AFS090-QN180 | TBD | TBD | TBD | TBD | TBD | ${ }^{\circ} \mathrm{CM}$ |
| AFS250-QN180 | TBD | TBD | TBD | TBD | TBD | ${ }^{\circ} \mathrm{CM}$ |
| AFS250-PQ208 | TBD | TBD | TBD | TBD | TBD | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| AFS600-PQ208 | TBD | TBD | TBD | TBD | TBD | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| AFS090-FG256 | TBD | TBD | TBD | TBD | TBD | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| AFS250-FG256 | TBD | TBD | TBD | TBD | TBD | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| AFS600-FG256 | 36.86 | 25.11 | 22.62 | 5.80 | 16.40 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| AFS1500-FG256 | TBD | TBD | TBD | TBD | TBD | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| AFS600-FG484 | 30.67 | 19.00 | 17.00 | 8.28 | 10.87 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| AFS1500-FG484 | TBD | TBD | TBD | TBD | TBD | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| AFS1500-FG676 | TBD | TBD | TBD | TBD | TBD | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## Theta-JA

Junction-to-ambient thermal resistance $\left(\theta_{J A}\right)$ is determined under standard conditions specified by JEDEC (JESD-51), but it has little relevance in actual performance of the product. It should be used with caution but is useful for comparing the thermal performance of one package to another.
A sample calculation showing the maximum power dissipation allowed for the AFS600-FG484 package under forced convection of $1.0 \mathrm{~m} / \mathrm{s}$ and $75^{\circ} \mathrm{C}$ ambient temperature is as follows:

$$
\text { Maximum Power Allowed }=\frac{T_{J(M A X)}-T_{A(M A X)}}{\theta_{J A}}
$$

EQ 3-4
where:

$$
\begin{aligned}
\theta_{\mathrm{JA}} & =19.00^{\circ} \mathrm{C} \mathrm{~W} \text { (taken from Table 3-6 on page 3-5). } \\
\mathrm{T}_{\mathrm{A}} & =75.00^{\circ} \mathrm{C}
\end{aligned}
$$

Maximum Power Allowed $=\frac{110.00^{\circ} \mathrm{C}-75.00^{\circ} \mathrm{C}}{19.00^{\circ} \mathrm{C} M}=1.84 \mathrm{~W}$
The power consumption of a device can be calculated using the Actel power calculator. The device's power consumption must be lower than the calculated maximum power dissipation by the package. If the power consumption is higher than the device's maximum allowable power dissipation, then a heat sink can be attached on top of the case or the airflow inside the system must be increased.

## Theta-JB

Junction-to-board thermal resistance ( $\theta_{\mathrm{J}}$ ) measures the ability of the package to dissipate heat from the surface of the chip to the printed circuit board. As defined by the JEDEC (JESD-51) standard, the thermal resistance from junction to board uses an isothermal ring cold plate zone concept. The ring cold plate is simply a means to generate an isothermal boundary condition at the perimeter. The cold plate is mounted on a JEDEC standard board with a minimum distance of 5.0 mm away from the package edge.

## Theta-JC

Junction-to-case thermal resistance ( $\theta_{\mathrm{JC}}$ ) measures the ability of a device to dissipate heat from the surface of the chip to the top or bottom surface of the package. It is applicable for packages used with external heat sinks. Constant temperature is applied to the surface in consideration and acts as a boundary condition. This only applies to situations where all or nearly all of the heat is dissipated through the surface in consideration.

## Calculation for Heat Sink

For example, in a design implemented in an AFS600FG484 package with $2.5 \mathrm{~m} / \mathrm{s}$ airflow, the power consumption value using the power calculator is 3.00 W . The user-dependent $T_{a}$ and $T_{j}$ are given as follows:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{J}} & =110.00^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{A}} & =70.00^{\circ} \mathrm{C}
\end{aligned}
$$

From the datasheet:

$$
\begin{aligned}
& \theta_{\mathrm{JA}}=17.00^{\circ} \mathrm{C} / \mathrm{W} \\
& \theta_{\mathrm{JC}}=8.28^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

$$
P=\frac{T_{J}-T_{A}}{\theta_{\mathrm{JA}}}=\frac{110^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{17.00 \mathrm{~W}}=2.35 \mathrm{~W}
$$

EQ 3-5
The 2.35 W power is less than the required 3.00 W . The design therefore requires a heat sink, or the airflow where the device is mounted should be increased. The design's total junction-to-air thermal resistance requirement can be estimated by EQ 3-6:

$$
\theta_{\text {ja(total })}=\frac{T_{J}-T_{A}}{P}=\frac{110^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{3.00 \mathrm{~W}}=13.33^{\circ} \mathrm{C} / \mathrm{W}
$$

Determining the heat sink's thermal performance:

$$
\theta_{\mathrm{JA}(\mathrm{TOTAL})}=\theta_{\mathrm{JC}}+\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}
$$

where:

$$
\begin{aligned}
\theta_{\mathrm{JA}}= & 0.37{ }^{\circ} \mathrm{C} / \mathrm{W} \\
= & \text { Thermal resistance of the interface material } \\
& \text { between the case and the heat sink, usually } \\
& \text { provided by the thermal interface manufacturer } \\
\theta_{\mathrm{SA}}= & \text { Thermal resistance of the heat sink in }{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

$$
\theta_{\mathrm{SA}}=\theta_{\mathrm{JA}(\mathrm{TOTAL})}-\theta_{\mathrm{JC}}-\theta_{\mathrm{CS}}
$$

EQ 3-8

$$
\theta_{S A}=13.33^{\circ} \mathrm{C} / \mathrm{W}-8.28^{\circ} \mathrm{C} / \mathrm{W}-0.37^{\circ} \mathrm{C} / \mathrm{W}=5.01^{\circ} \mathrm{C} \mathrm{~W}
$$

A heat sink with a thermal resistance of $5.01^{\circ} \mathrm{C} / \mathrm{W}$ or better should be used. Thermal resistance of heat sinks is a function of airflow. The heat sink performance can be significantly improved with increased airflow.
Carefully estimating thermal resistance is important in the long-term reliability of an Actel FPGA. Design engineers should always correlate the power consumption of the device with the maximum allowable power dissipation of the package selected for that device.
$\qquad$

Note: The junction-to-air and junction-to-board thermal resistances are based on JEDEC standard (JESD-51) and assumptions made in building the model. It may not be realized in actual application and therefore should be used with a degree of caution. Junction-to-case thermal resistance assumes that all power is dissipated through the case.

## Temperature and Voltage Derating Factors

Table 3-7 • Temperature and Voltage Derating Factors for Timing Delays (Normalized to $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$ )

| Array Voltage <br> $\mathbf{V}_{\mathbf{C C}} \mathbf{( V )}$ | $\mathbf{7 6 0} \mathbf{C}$ | $\mathbf{0}{ }^{\circ} \mathbf{C}$ | $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ | $\mathbf{7 0}^{\circ} \mathbf{C}$ | $\mathbf{8 5}^{\circ} \mathbf{C}$ | $\mathbf{1 0 0}^{\circ} \mathbf{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.88 | 0.93 | 0.95 | 1.00 | 1.02 | 1.05 |
| 1.500 | 0.83 | 0.88 | 0.90 | 0.95 | 0.96 | 0.99 |
| 1.575 | 0.80 | 0.85 | 0.86 | 0.91 | 0.93 | 0.96 |

## Calculating Power Dissipation

## Quiescent Supply Current

Table 3-8 • Quiescent Supply Current Characteristics (IDDQ) ${ }^{1}$

| Parameter | Conditions and Modes | AFS600 | AFS250 | AFS090 |
| :--- | :--- | :---: | :---: | :---: |
|  | Maximum in operating mode $\left(85^{\circ} \mathrm{C}\right)^{2}$ | 45 mA | 30 mA | 15 mA |
|  | Maximum in operating mode $\left(70^{\circ} \mathrm{C}\right)^{2}$ | 30 mA | 20 mA | 10 mA |
| $\mathrm{I}_{\text {DC1 }}$ | Typical in operating mode $\left(25^{\circ} \mathrm{C}\right)^{2}$ | 5 mA | 3 mA | 2 mA |
| $\mathrm{I}_{\text {DC2 }}$ | Typical in standby mode $\left(25^{\circ} \mathrm{C}\right)^{3}$ | $200 \mu \mathrm{~A}$ | $200 \mu \mathrm{~A}$ | $200 \mu \mathrm{~A}$ |
| $\mathrm{I}_{\text {DC3 }}$ | Typical in sleep mode $\left(25^{\circ} \mathrm{C}\right)^{4}$ | $10 \mu \mathrm{~A}$ | $10 \mu \mathrm{~A}$ | $10 \mu \mathrm{~A}$ |

## Notes:

1. -F speed grade devices may experience higher Quiescent Supply current of up to five times the standard $I_{D D}$ and higher I/O leakage.
2. I ${ }_{D C 1}$ includes $V_{C C}, V_{P U M P}, V_{C C I}$, and VMV currents. Values do not include I/O static contribution, which is shown in Table 3-9 on page 3-8 and Table 3-10 on page 3-9.
3. I ${ }_{D C 2}$ represents the current from the $V_{C C 33 A}$ supply when the RTC (and the crystal oscillator) is ON, the FPGA is OFF, and voltage regulator is OFF.
4. I $I_{D C 3}$ represents the current from the $V_{C C 33 A}$ supply when the RTC (and the crystal oscillator), the FPGA, and the voltage regulator are OFF.

## Fusion Family of Mixed-Signal Flash FPGAs

## Power Per I/O Pin

Table 3-9 • Summary of I/O Input Buffer Power (Per Pin) - Default I/O Software Settings ${ }^{1,2}$

|  | VMV (V) | Static Power $\mathrm{P}_{\mathrm{DC7}}(\mathrm{~mW})^{3}$ | Dynamic Power <br> $\mathbf{P}_{\text {AC9 }}(\boldsymbol{\mu} \mathbf{W} / \mathrm{MHz})^{\mathbf{4}}$ |
| :---: | :---: | :---: | :---: |
| Single-Ended |  |  |  |
| 3.3 V LVTTL/LVCMOS | 3.3 | - | 17.39 |
| 3.3 V LVTTL/LVCMOS - Schmitt trigger | 3.3 | - | 25.51 |
| 2.5 V LVCMOS | 2.5 | - | 5.76 |
| 2.5 V LVCMOS - Schmitt trigger | 2.5 | - | 7.16 |
| 1.8 V LVCMOS | 1.8 | - | 2.72 |
| 1.8 V LVCMOS - Schmitt trigger | 1.8 | - | 2.80 |
| 1.5 V LVCMOS (JESD8-11) | 1.5 | - | 2.08 |
| 1.5 V LVCMOS (JESD8-11) - Schmitt trigger | 1.5 | - | 2.00 |
| 3.3 VPCl | 3.3 | - | 18.82 |
| $3.3 \mathrm{VPCI}-$ Schmitt trigger | 3.3 | - | 20.12 |
| $3.3 \mathrm{~V} \mathrm{PCI-X}$ | 3.3 | - | 18.82 |
| $3.3 \mathrm{~V} \mathrm{PCI-X} \mathrm{-} \mathrm{Schmitt} \mathrm{trigger}$ | 3.3 | - | 20.12 |
| Voltage-Referenced |  |  |  |
| 3.3 V GTL | 3.3 | 2.90 | 8.23 |
| 2.5 V GTL | 2.5 | 2.13 | 4.78 |
| $3.3 \mathrm{~V} \mathrm{GTL}+$ | 3.3 | 2.81 | 4.14 |
| $2.5 \mathrm{~V} \mathrm{GTL}+$ | 2.5 | 2.57 | 3.71 |
| HSTL (I) | 1.5 | 0.17 | 2.03 |
| HSTL (II) | 1.5 | 0.17 | 2.03 |
| SSTL2 (I) | 2.5 | 1.38 | 4.48 |
| SSTL2 (II) | 2.5 | 1.38 | 4.48 |
| SSTL3 (I) | 3.3 | 3.21 | 9.26 |
| SSTL3 (II) | 3.3 | 3.21 | 9.26 |
| Differential |  |  |  |
| LVDS, BLVDS, M-LVDS | 2.5 | 2.26 | 1.50 |
| LVPECL | 3.3 | 5.71 | 2.17 |

## Notes:

1. Input buffer power values provided in this table correspond to Pro I/Os. Pins assigned to east and west peripheries may have slightly lower power characteristics.
2. For a different pin location, Actel recommends using the Actel power calculator or SmartPower in Actel Libero IDE software.
3. $P_{D C 7}$ is the static power (where applicable) measured on VMV.
4. $P_{A C 9}$ is the total dynamic power measured on $V_{C C}$ and $V M V$.

Table 3-10 • Summary of I/O Output Buffer Power (Per Pin)—Default I/O Software Settings ${ }^{1,2,3}$

|  | $\mathrm{C}_{\text {LOAD }}$ (pF) | $\mathrm{V}_{\text {ccI }}(\mathrm{V})$ | Static Power $P_{\text {DC8 }}(\mathbf{m W})^{4}$ | Dynamic Power $\mathbf{P a C 1 0}(\boldsymbol{\mu} \mathbf{W} / \mathrm{MHz})^{5}$ |
| :---: | :---: | :---: | :---: | :---: |
| Single-Ended |  |  |  |  |
| 3.3 V LVTTL/LVCMOS | 35 | 3.3 | - | 474.70 |
| 2.5 V LVCMOS | 35 | 2.5 | - | 270.73 |
| 1.8 V LVCMOS | 35 | 1.8 | - | 151.78 |
| 1.5 V LVCMOS (JESD8-11) | 35 | 1.5 | - | 104.55 |
| 3.3 VPCl | 10 | 3.3 | - | 204.61 |
| $3.3 \mathrm{~V} \mathrm{PCI-X}$ | 10 | 3.3 | - | 204.61 |
| Voltage-Referenced |  |  |  |  |
| 3.3 V GTL | 10 | 3.3 | - | 24.08 |
| 2.5 V GTL | 10 | 2.5 | - | 13.52 |
| 3.3 V GTL+ | 10 | 3.3 | - | 24.10 |
| 2.5 V GTL+ | 10 | 2.5 | - | 13.54 |
| HSTL (I) | 20 | 1.5 | 7.08 | 26.22 |
| HSTL (II) | 20 | 1.5 | 13.88 | 27.22 |
| SSTL2 (I) | 30 | 2.5 | 16.69 | 105.56 |
| SSTL2 (II) | 30 | 2.5 | 25.91 | 116.60 |
| SSTL3 (I) | 30 | 3.3 | 26.02 | 114.87 |
| SSTL3 (II) | 30 | 3.3 | 42.21 | 131.76 |
| Differential |  |  |  |  |
| LVDS, BLVDS, M-LVDS | - | 2.5 | 7.70 | 89.62 |
| LVPECL | - | 3.3 | 19.42 | 168.02 |

## Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.
2. Output buffer power values provided in this table correspond to Pro I/Os. Output buffers assigned to east and west peripheries may have slightly lower power characteristics.
3. For a different pin location, output load, drive strength, or slew rate, Actel recommends using the Actel power calculator or SmartPower in Actel Libero IDE software.
4. $P_{D C 8}$ is the static power (where applicable) measured on $V_{C C l}$.
5. $P_{A C 10}$ is the total dynamic power measured on $V_{C C}$ and $V_{C C 1}$.

## Dynamic Power Consumption of Various Internal Resources

Table 3-11 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices

| Parameter | Definition | Power Supply |  | Device-Specific Dynamic Contributions |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Name | Setting | AFS600 | AFS250 | AFS090 |  |
| $\mathrm{P}_{\text {AC1 }}$ | Clock contribution of a Global Rib | $\mathrm{V}_{\mathrm{CC}}$ | 1.5 V | 12.8 | 12.8 | 12.8 | $\mu \mathrm{W} / \mathrm{MHz}$ |
| $\mathrm{P}_{\text {AC2 }}$ | Clock contribution of a Global Spine | $\mathrm{V}_{\mathrm{CC}}$ | 1.5 V | 1.9 | 1.9 | 1.9 | $\mu \mathrm{W} / \mathrm{MHz}$ |
| $\mathrm{P}_{\text {AC3 }}$ | Clock contribution of a VersaTile row | $\mathrm{V}_{\mathrm{CC}}$ | 1.5 V | 0.81 | 0.81 | 0.81 | $\mu \mathrm{W} / \mathrm{MHz}$ |
| PAC4 | Clock contribution of a VersaTile used as a sequential module | $\mathrm{V}_{\mathrm{CC}}$ | 1.5 V | 0.11 | 0.11 | 0.11 | $\mu \mathrm{W} / \mathrm{MHz}$ |
| $\mathrm{P}_{\text {AC5 }}$ | First contribution of a VersaTile used as a sequential module | $\mathrm{V}_{\mathrm{CC}}$ | 1.5 V | 0.07 | 0.07 | 0.07 | $\mu \mathrm{W} / \mathrm{MHz}$ |
| $\mathrm{P}_{\text {AC6 }}$ | Second contribution of a VersaTile used as a sequential module | $\mathrm{V}_{\mathrm{CC}}$ | 1.5 V | 0.29 | 0.29 | 0.29 | $\mu \mathrm{W} / \mathrm{MHz}$ |
| $\mathrm{P}_{\text {AC7 }}$ | Contribution of a VersaTile used as a combinatorial module | $\mathrm{V}_{\mathrm{CC}}$ | 1.5 V | 0.29 | 0.29 | 0.29 | $\mu \mathrm{W} / \mathrm{MHz}$ |
| $\mathrm{P}_{\text {AC8 }}$ | Average contribution of a routing net | $\mathrm{V}_{\mathrm{CC}}$ | 1.5 V | 0.70 | 0.70 | 0.70 | $\mu \mathrm{W} / \mathrm{MHz}$ |
| $\mathrm{P}_{\text {AC9 }}$ | Contribution of an I/O input pin (standard dependent) | $\begin{aligned} & \mathrm{VMVI} \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$ | See Table 3-9 on page 3-8 |  |  |  |  |
| $\mathrm{P}_{\text {AC10 }}$ | Contribution of an I/O output pin (standard dependent) | $\mathrm{V}_{\mathrm{CCI}} \mathrm{N}_{\mathrm{CC}}$ | See Table 3-10 on page 3-9 |  |  |  |  |
| $\mathrm{P}_{\text {AC11 }}$ | Average contribution of a RAM block during a read operation | $\mathrm{V}_{\mathrm{CC}}$ | 1.5 V | 25.00 | 25.00 | 25.00 | $\mu \mathrm{W} / \mathrm{MHz}$ |
| $\mathrm{P}_{\text {AC12 }}$ | Average contribution of a RAM block during a write operation | $\mathrm{V}_{\mathrm{CC}}$ | 1.5 V | 30.00 | 30.00 | 30.00 | $\mu \mathrm{W} / \mathrm{MHz}$ |
| $\mathrm{P}_{\text {AC13 }}$ | First contribution of a PLL | $\mathrm{V}_{\mathrm{CC}}$ | 1.5 V | 4.00 | 4.00 | 4.00 | $\mu \mathrm{W} / \mathrm{MHz}$ |
| $\mathrm{P}_{\text {AC14 }}$ | Second contribution of a PLL | $V_{C C}$ | 1.5 V | 2.00 | 2.00 | 2.00 | $\mu \mathrm{W} / \mathrm{MHz}$ |
| $\mathrm{P}_{\text {AC15 }}$ | Contribution of NVM block during a read operation ( $\mathrm{F}<33 \mathrm{MHz}$ ) | $\mathrm{V}_{\mathrm{CC}}$ | 1.5 V | 358.00 | 358.00 | 358.00 | $\mu \mathrm{W} / \mathrm{MHz}$ |
| $\mathrm{P}_{\text {AC16 }}$ | 1st contribution of NVM block during a read operation ( $\mathrm{F}>33 \mathrm{MHz}$ ) | $\mathrm{V}_{\mathrm{CC}}$ | 1.5 V | 12.88 | 12.88 | 12.88 | mW |
| $\mathrm{P}_{\text {AC17 }}$ | 2nd contribution of NVM block during a read operation ( $\mathrm{F}>33 \mathrm{MHz}$ ) | $\mathrm{V}_{\mathrm{CC}}$ | 1.5 V | 4.80 | 4.80 | 4.80 | $\mu \mathrm{W} / \mathrm{MHz}$ |
| $\mathrm{P}_{\text {AC18 }}$ | Crystal Oscillator contribution | $\mathrm{V}_{\text {CC33A }}$ | 3.3 V | 0.63 | 0.63 | 0.63 | mW |
| $\mathrm{P}_{\text {AC19 }}$ | RC Oscillator contribution | $V_{\text {CC33A }}$ | 3.3 V | 3.30 | 3.30 | 3.30 | mW |
| $\mathrm{P}_{\text {AC20 }}$ | Analog Block dynamic power contribution of ADC | $\mathrm{V}_{\text {CC }}$ | 1.5 V | 3.00 | 3.00 | 3.00 | mW |

## Static Power Consumption of Various Internal Resources

Table 3-12 • Different Components Contributing to the Static Power Consumption in Fusion Devices

| Parameter | Definition | Power Supply |  | Device-Specific Static Contributions |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Name | Setting | AFS600 | AFS250 | AFS090 |  |
| $\mathrm{P}_{\mathrm{DC} 1}$ | Core static power contribution in operating mode | $\mathrm{V}_{\mathrm{CC}}$ | 1.5 V | 7.50 | 4.50 | 3.00 | mW |
| $\mathrm{P}_{\mathrm{DC} 2}$ | Device static power contribution in standby mode | $\mathrm{V}_{\text {CC33A }}$ | 3.3 V | 0.03 | 0.03 | 0.03 | mW |
| $\mathrm{P}_{\text {DC3 }}$ | Device static power contribution in sleep mode | $\mathrm{V}_{\text {CC33A }}$ | 3.3 V | 0.03 | 0.03 | 0.03 | mW |
| $\mathrm{P}_{\text {DC4 }}$ | NVM static power contribution | $\mathrm{V}_{\text {CC }}$ | 1.5 V | 1.19 | 1.19 | 1.19 | mW |
| $\mathrm{P}_{\text {DC5 }}$ | Analog Block static power contribution of ADC | $\mathrm{V}_{\text {CC33A }}$ | 3.3 V | 8.25 | 8.25 | 8.25 | mW |
| $\mathrm{P}_{\text {DC6 }}$ | Analog Block static power contribution per Quad | $\mathrm{V}_{\text {CC33A }}$ | 3.3 V | 3.30 | 3.30 | 3.30 | mW |
| $\mathrm{P}_{\mathrm{DC7}}$ | Static contribution per input pin standard dependent contribution | VMV/ $\mathrm{V}_{\mathrm{CC}}$ | See Table 3-9 on page 3-8 |  |  |  |  |
| $\mathrm{P}_{\text {DC8 }}$ | Static contribution per input pin standard dependent contribution | VMV/ $\mathrm{V}_{\mathrm{CC}}$ | See Table 3-10 on page 3-9 |  |  |  |  |

## Power Calculation Methodology

The section below describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero IDE software.
The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- The internal clock frequencies
- The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- The number of NVM blocks used in the design
- The number of Analog quads used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 3-13 on page 3-16
- Enable rates of output buffers—guidelines are provided for typical applications in Table 3-14 on page 3-16
- Read rate and write rate to the RAM—guidelines are provided for typical applications in Table 3-14 on page 3-16.
- Read rate to the NVM blocks

The calculation should be repeated for each clock domain defined in the design.

## Methodology

## Total Power Consumption-Pitotal

Operating Mode, Standby Mode, and Sleep Mode
$P_{\text {TOTAL }}=P_{\text {STAT }}+P_{\text {DYN }}$
$\mathrm{P}_{\text {STAT }}$ is the total static power consumption.
$P_{\text {DYN }}$ is the total dynamic power consumption.

## Total Static Power Consumption-P $\mathbf{S T A T}$

Operating Mode
$P_{\text {STAT }}=P_{D C 1}+\left(N_{\text {NVM-BLOCKS }} * P_{D C 4}\right)+P_{D C 5}+\left(N_{\text {QUADS }} * P_{D C 6}\right)+\left(N_{\text {INPUTS }} * P_{D C 7}\right)+\left(N_{\text {OUTPUTS }} * P_{D C 8}\right)$
$\mathrm{N}_{\text {NVM-bLOCKS }}$ is the number of NVM blocks available in the device.
$\mathrm{N}_{\text {QUADS }}$ is the number of Analog Quads used in the design.
$\mathrm{N}_{\text {INPUTS }}$ is the number of I/O input buffers used in the design.
$\mathrm{N}_{\text {OUTPUTS }}$ is the number of I/O output buffers used in the design.
Standby Mode
$P_{\text {STAT }}=P_{\text {DC2 }}$
Sleep Mode
$P_{\text {STAT }}=P_{\text {DC3 }}$
Total Dynamic Power Consumption-PDYN
Operating Mode

$$
P_{D Y N}=P_{C L O C K}+P_{S-C E L L}+P_{C-C E L L}+P_{N E T}+P_{I N P U T S}+P_{O U T P U T S}+P_{M E M O R Y}+P_{P L L}+P_{N V M}+P_{X T L-O S C}+P_{R C-O S C}+P_{A B}
$$

## Standby Mode

$P_{\text {DYN }}=P_{\text {XTL-OSC }}$
Sleep Mode

$$
P_{D Y N}=0 W
$$

## Global Clock Dynamic Contribution-Pclock

## Operating Mode

$P_{\text {CLOCK }}=\left(P_{\text {AC1 }}+N_{\text {SPINE }} * P_{\text {AC2 }}+N_{\text {ROW }} * P A C 3+N_{\text {SCELL }} * P_{\text {AC4 }}\right) * F_{\text {CLK }}$
$\mathrm{N}_{\text {SPINE }}$ is the number of global spines used in the user design-guidelines are provided in Table 3-13 on page 3-16.
$N_{\text {ROw }}$ is the number of VersaTile rows used in the design-guidelines are provided in Table 3-13 on page 3-16.
$\mathrm{F}_{\text {CLK }}$ is the global clock signal frequency.
$\mathrm{N}_{\text {S-CELL }}$ is the number of VersaTiles used as sequential modules in the design.
Standby Mode and Sleep Mode
$P_{\text {Clock }}=0 \mathrm{~W}$

## Sequential Cells Dynamic Contribution-P $\mathbf{P s}_{\text {S-CELL }}$

Operating Mode
$P_{\text {S-CELL }}=N_{\text {S-CELL }} *\left(P_{A C 5}+\left(\alpha_{1} / 2\right) * P_{\text {AC6 }}\right) * F_{\text {CLK }}$
$\mathrm{N}_{\mathrm{S} \text {-CELL }}$ is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1 .
$\alpha_{1}$ is the toggle rate of VersaTile outputs-guidelines are provided in Table 3-13 on page 3-16.
$\mathrm{F}_{\text {CLK }}$ is the global clock signal frequency.
Standby Mode and Sleep Mode
$\mathrm{P}_{\mathrm{S} \text {-CELL }}=0 \mathrm{~W}$

## Combinational Cells Dynamic Contribution-P ${ }_{\text {c-cell }}$

Operating Mode
$P_{\text {C-CELL }}=N_{C-C E L L} *\left(\alpha_{1} / 2\right) * P_{A C 7} * F_{\text {CLK }}$
$\mathrm{N}_{\mathrm{C} \text {-CELL }}$ is the number of VersaTiles used as combinatorial modules in the design.
$\alpha_{1}$ is the toggle rate of VersaTile outputs-guidelines are provided in Table 3-13 on page 3-16.
$\mathrm{F}_{\text {CLK }}$ is the global clock signal frequency.
Standby Mode and Sleep Mode
$P_{\text {C-CELL }}=0 \mathrm{~W}$

## Routing Net Dynamic Contribution- $\mathbf{P}_{\text {NET }}$

Operating Mode
$P_{\text {NET }}=\left(N_{\text {S-CELL }}+N_{\text {C-CELL }}\right) *\left(\alpha_{1} / 2\right) * P_{\text {AC8 }} * F_{\text {CLK }}$
$\mathrm{N}_{\mathrm{S} \text {-CELL }}$ is the number VersaTiles used as sequential modules in the design.
$\mathrm{N}_{\mathrm{C} \text {-CELL }}$ is the number of VersaTiles used as combinatorial modules in the design.
$\alpha_{1}$ is the toggle rate of VersaTile outputs-guidelines are provided in Table 3-13 on page 3-16.
$\mathrm{F}_{\text {CLK }}$ is the global clock signal frequency.
Standby Mode and Sleep Mode
$P_{\text {NET }}=0 \mathrm{~W}$

## I/O Input Buffer Dynamic Contribution-Pinputs

## Operating Mode

$P_{\text {INPUTS }}=N_{\text {INPUTS }} *\left(\alpha_{2} / 2\right) * P_{\text {AC9 }} * F_{\text {CLK }}$
$\mathrm{N}_{\text {INPUTS }}$ is the number of I/O input buffers used in the design.
$\alpha_{2}$ is the I/O buffer toggle rate-guidelines are provided in Table 3-13 on page 3-16.
$\mathrm{F}_{\mathrm{CLK}}$ is the global clock signal frequency.
Standby Mode and Sleep Mode
$P_{\text {InPUTS }}=0 \mathrm{~W}$

## I/O Output Buffer Dynamic Contribution—Poutputs

Operating Mode
$P_{\text {OUTPUTS }}=N_{\text {OUTPUTS }} *\left(\alpha_{2} / 2\right) * \beta_{1} * P_{\text {AC10 }} * F_{\text {CLK }}$
$\mathrm{N}_{\text {OUTPUTS }}$ is the number of I/O output buffers used in the design.
$\alpha_{2}$ is the I/O buffer toggle rate-guidelines are provided in Table 3-13 on page 3-16.
$\beta_{1}$ is the I/O buffer enable rate-guidelines are provided in Table 3-14 on page 3-16.
$\mathrm{F}_{\text {CLK }}$ is the global clock signal frequency.
Standby Mode and Sleep Mode
$P_{\text {OUTPUTS }}=0 \mathrm{~W}$

## RAM Dynamic Contribution- $\mathbf{P}_{\text {MEMORY }}$

## Operating Mode

$P_{\text {MEMORY }}=\left(\right.$ NBLOCKS $* P_{\text {AC11 }} * \beta_{2} *$ F READ-CLOCK $)+\left(\right.$ NBLOCK $\left.* P_{\text {AC12 }} * \beta_{3} * F_{\text {WRITE-CLOCK }}\right)$
NBLOCKS is the number of RAM blocks used in the design.
$\mathrm{F}_{\text {READ-CLOCK }}$ is the memory read clock frequency.
$\beta_{2}$ is the RAM enable rate for read operations-guidelines are provided in Table 3-14 on page 3-16.
$\beta_{3}$ the RAM enable rate for write operations-guidelines are provided in Table 3-14 on page 3-16.
$F_{\text {WRITE-CLOCK }}$ is the memory write clock frequency.
Standby Mode and Sleep Mode
$\mathrm{P}_{\mathrm{MEMORY}}=0 \mathrm{~W}$

## PLL/CCC Dynamic Contribution-P PLL

## Operating Mode

$P_{\text {PLL }}=P_{\text {AC13 }} * F_{\text {CLKIN }}+\Sigma\left(P_{\text {AC } 14} * F_{\text {CLKOUT }}\right)$
$\mathrm{F}_{\text {CLKIN }}$ is the input clock frequency.
$\mathrm{F}_{\text {CLKOUT }}$ is the output clock frequency. ${ }^{1}$
Standby Mode and Sleep Mode
$P_{\text {PLL }}=0 \mathrm{~W}$

[^7]
## Nonvolatile Memory Dynamic Contribution-P $\mathbf{P N M}_{\mathbf{N V}}$

Operating Mode
The NVM dynamic power consumption is a piece-wise linear function of frequency.
$P_{\text {NVM }}=N_{\text {NVM-BLOCKS }} * \beta_{4} * P_{\text {AC15 }} * F_{\text {READ-NVM }} \quad$ when $F_{\text {READ-NVM }} \leq 33 \mathrm{MHz}$,
$P_{\text {NVM }}=N_{\text {NVM-BLOCKS }} * \beta_{4} *\left(P_{\text {AC16 }}+P_{\text {AC17 }} * F_{\text {READ-NVM }}\right)$ when $F_{\text {READ-NVM }}>33 \mathrm{MHz}$
$\mathrm{N}_{\text {NVM-blocks }}$ is the number of NVM blocks used in the design (2 in AFS600)
$\beta_{4}$ is the NVM enable rate for read operations. Default is 0 (NVM mainly in idle state)
$\mathrm{F}_{\text {READ-NVM }}$ is the NVM read-clock frequency
Standby Mode and Sleep Mode
$P_{\text {NVM }}=0 \mathrm{~W}$

## Crystal Oscillator Dynamic Contribution- $\mathbf{P x t l}_{\text {xt-osc }}$

Operating Mode
$P_{\text {XTL-OSC }}=P_{\text {AC } 18}$
Standby Mode
$P_{\text {XTL-OSC }}=P_{\text {AC18 }}$
Sleep Mode
PxtLosc $=0 \mathrm{~W}$
RC Oscillator Dynamic Contribution-P $\mathbf{P r}_{\text {R-osc }}$
Operating Mode
$\mathrm{P}_{\mathrm{RC} \text { - } \mathrm{OSC}}=\mathrm{P}_{\mathrm{AC} 19}$
Standby Mode and Sleep Mode
$P_{\text {RC- }}$ osc $=0 \mathrm{~W}$
Analog System Dynamic Contribution- $\mathbf{P}_{\mathbf{A B}}$
Operating Mode
$P_{A B}=P_{A C 20}$
Standby Mode and Sleep Mode
$P_{A B}=0 W$

## Fusion Family of Mixed-Signal Flash FPGAs

## Guidelines

## Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is $100 \%$, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is $100 \%$ as all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8 -bit counter is $25 \%$ :
- Bit 0 (LSB) $=100 \%$
- Bit $1=50 \%$
- Bit $2=25 \%$
- ...
- Bit 7 (MSB) $=0.78125 \%$
- The average toggle rate is $=(100 \%+50 \%+25 \%+12.5 \%+\ldots 0.78125 \%) / 8$.


## Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be $100 \%$.

Table 3-13 • Toggle Rate Guidelines Recommended for Power Calculation

| Component | Definition | Guideline |
| :--- | :--- | :---: |
| $\alpha_{1}$ | Toggle rate of VersaTile outputs | $10 \%$ |
| $\alpha_{2}$ | I/O buffer toggle rate | $10 \%$ |

Table 3-14 • Enable Rate Guidelines Recommended for Power Calculation

| Component | Definition | Guideline |
| :--- | :--- | :---: |
| $\boldsymbol{\beta}_{1}$ | I/O output buffer enable rate | $100 \%$ |
| $\boldsymbol{\beta}_{2}$ | RAM enable rate for read operations | $12.5 \%$ |
| $\boldsymbol{\beta}_{3}$ | RAM enable rate for write operations | $12.5 \%$ |
| $\boldsymbol{\beta}_{4}$ | NVM enable rate for read operations | $0 \%$ |

## Example of Power Calculation

This example considers a shift register with 5,000 storage tiles including a counter and memory that stores analog information. The shift register is clocked at 50 MHz and stores and reads information from a RAM.
The device used is a commercial AFS600 device operating in typical conditions.
The calculation below uses the power calculation methodology previously presented and shows how to determine the dynamic and static power consumption of resources used in the application.
Also included in the example is the calculation of power consumption in operating, standby, and sleep modes to illustrate the benefit of power-saving modes.

## Global Clock Contribution-P $\mathbf{C L O C K}$

$\mathrm{F}_{\text {CLK }}=50 \mathrm{MHz}$
Number of Sequential VersaTiles: $\mathrm{N}_{\mathrm{S} \text {-CELL }}=5,000$
Estimated number of Spines: $\mathrm{N}_{\text {SPINES }}=5$
Estimated number of Rows: $\mathrm{N}_{\text {ROW }}=313$
Operating Mode
$P_{\text {CLOCK }}=\left(P_{\text {AC1 }}+N_{\text {SPINE }} * P_{\text {AC2 }}+N_{\text {ROW }} * P A C 3+N_{S-C E L L} * P_{\text {AC4 }}\right) * F_{\text {CLK }}$
$P_{\text {CLOCK }}=(0.0128+5 * 0.0019+313 * 0.00081+5,000 * 0.00011) * 50$
$\mathrm{P}_{\text {CLOCK }}=41.28 \mathrm{~mW}$
Standby Mode and Sleep Mode
$P_{\text {CLOCK }}=0 \mathrm{~W}$
Logic - Sequential Cells, Combinational Cells, and Routing Net Contributions-P ${ }_{\text {s-CELL, }} \mathbf{P}_{\text {c-CELL, }}$ and $\mathbf{P}_{\text {NET }}$
$F_{\text {CLK }}=50 \mathrm{MHz}$
Number of Sequential VersaTiles: $\mathrm{N}_{\text {S-CELL }}=5,000$
Number of Combinational VersaTiles: $\mathrm{N}_{\text {C-CELL }}=6,000$
Estimated Toggle rate of VersaTile outputs: $\alpha_{1}=0.1$ (10\%)

## Operating Mode

$P_{S-C E L L}=N_{S-C E L L} *\left(P_{A C 5}+\left(\alpha_{1} / 2\right) * P_{A C 6}\right) * F_{C L K}$
$P_{\text {S-CELL }}=5,000 *(0.00007+(0.1 / 2) * 0.00029) * 50$
$P_{\text {S-CELL }}=21.13 \mathrm{~mW}$
$P_{\text {C-CELL }}=N_{\text {C-CELL }} *\left(\alpha_{1} / 2\right) * P_{A C 7} * F_{\text {CLK }}$
$\mathrm{P}_{\text {C-CELL }}=6,000 *(0.1 / 2) * 0.00029 * 50$
$\mathrm{P}_{\text {C-CELL }}=4.35 \mathrm{~mW}$
$P_{\text {NET }}=\left(N_{S-C E L L}+N_{\text {C-CELL }}\right) *\left(\alpha_{1} / 2\right) * P_{A C 8} * F_{\text {CLK }}$
$P_{\text {NET }}=(5,000+6,000) *(0.1 / 2) * 0.0007 * 50$
$\mathrm{P}_{\mathrm{NET}}=19.25 \mathrm{~mW}$

PLOGIC $=\mathrm{P}_{\text {S-CELL }}+\mathrm{P}_{\text {C-CELL }}+\mathrm{P}_{\text {NET }}$
PLOGIC $=21.13 \mathrm{~mW}+4.35 \mathrm{~mW}+19.25 \mathrm{~mW}$
PLOGIC $=44.73 \mathrm{~mW}$

## Fusion Family of Mixed-Signal Flash FPGAs

## Standby Mode and Sleep Mode

$$
\begin{aligned}
& \mathrm{P}_{\text {S-CELL }}=0 \mathrm{~W} \\
& \mathrm{P}_{\mathrm{C}-\mathrm{CELL}}=0 \mathrm{~W} \\
& \mathrm{P}_{\text {NET }}=0 \mathrm{~W} \\
& \mathrm{PLOGIC}=0 \mathrm{~W}
\end{aligned}
$$

## I/O Input and Output Buffer Contribution- $P_{\text {I/O }}$

This example uses LVTTL 3.3 V I/O cells. The output buffers are 12 mA capable configured with high output slew and are driving a 35 pF output load.
$\mathrm{F}_{\text {CLK }}=50 \mathrm{MHz}$
Number of input pin used: $\mathrm{N}_{\text {INPUTS }}=30$
Number of output pins used: $\mathrm{N}_{\text {OUTPUTS }}=40$
Estimated I/O buffer toggle rate: $\alpha_{2}=0.1$ (10\%)
Estimated IO buffer enable rate: $\beta_{1}=1$ (100\%)

## Operating Mode

```
\(P_{\text {InPUTS }}=N_{\text {INPUTS }} *\left(\alpha_{2} / 2\right) * P_{\text {AC9 }} * F_{\text {CLK }}\)
\(P_{\text {InPUTS }}=30 *(0.1 / 2) * 0.01739 * 50\)
\(P_{\text {INPUTS }}=1.30 \mathrm{~mW}\)
```

$P_{\text {OUTPUTS }}=$ N OUTPUTS $^{*}\left(\alpha_{2} / 2\right) * \beta_{1} * P_{\text {AC10 }} * F_{\text {CLK }}$
$P_{\text {OUTPUTS }}=40$ * $(0.1 / 2) * 1 * 0.4747$ * 50
$P_{\text {OUTPUTS }}=47.47 \mathrm{~mW}$

$$
\begin{aligned}
& \mathrm{PIO}=\mathrm{P}_{\text {INPUTS }}+\mathrm{P}_{\text {OUTPUTS }} \\
& \mathrm{PIO}=1.30 \mathrm{~mW}+47.47 \mathrm{~mW} \\
& \mathrm{PIO}=48.77 \mathrm{~mW}
\end{aligned}
$$

## Standby Mode and Sleep Mode

$$
\begin{aligned}
& \mathrm{P}_{\text {INPUTS }}=0 \mathrm{~W} \\
& \mathrm{P}_{\text {OUTPUTS }}=0 \mathrm{~W} \\
& \mathrm{P}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~W}
\end{aligned}
$$

## RAM Contribution-P ${ }_{\text {MEMORY }}$

$$
\text { Frequency of Read-Clock: } \mathrm{F}_{\text {READ-CLOCK }}=10 \mathrm{MHz}
$$

Frequency of Write-Clock: FWrite-clock $=10 \mathrm{MHz}$
Number of Ram Blocks: NBLOCKS $=20$
Estimated RAM Read Enable Rate: $\beta_{2}=0.125$ (12.5\%)
Estimated RAM Write Enable Rate: $\beta_{3}=0.125$ (12.5\%)

## Operating Mode

```
\(P_{\text {MEMORY }}=\left(\right.\) NBLOCKS \(\left.* P_{\text {AC11 }} * \beta_{2} * F_{\text {READ-CLOCK }}\right)+\left(\right.\) NBLOCK \(\left.* P_{\text {AC12 }} * \beta_{3} * F_{\text {WRITE-CLOCK }}\right)\)
\(P_{\text {MEMORY }}=(20 * 0.025 * 0.125 * 10)+(20 * 0.030 * 0.125 * 10)\)
\(P_{\text {MEMORY }}=1.38 \mathrm{~mW}\)
```


## Standby Mode and Sleep Mode

$P_{\text {MEMORY }}=0 \mathrm{~W}$

## PLL/CCC Contribution- $\mathbf{P P L L}$

PLL is not used in this application.

$$
P_{\mathrm{PLL}}=0 \mathrm{~W}
$$

## Nonvolatile Memory-P $\mathbf{P V M}_{\text {NV }}$

Nonvolatile memory is not used in this application.
$\mathrm{P}_{\mathrm{NVM}}=0 \mathrm{~W}$

## Crystal Oscillator-P $\mathbf{X t L}_{\text {XI-OSC }}$

The application utilizes standby mode. The crystal oscillator is assumed to be active.
Operating Mode
$P_{\text {XtL-OSC }}=P_{\text {AC } 18}$
$P_{\text {XtL-OSC }}=0.63 \mathrm{~mW}$
Standby Mode
PXTL-OSC $=P_{\text {AC } 18}$
P XtL-OSC $=0.63 \mathrm{~mW}$
Sleep Mode
$P_{\text {xtl-osc }}=0 \mathrm{~W}$

## RC Oscillator- $\mathbf{P}_{\text {RC-osc }}$

Operating Mode
$\mathrm{P}_{\mathrm{RC}-\mathrm{OSC}}=\mathrm{P}_{\mathrm{AC} 19}$
$P_{\text {RC-OSC }}=3.30 \mathrm{~mW}$
Standby Mode and Sleep Mode
$P_{\text {RC-OSC }}=0 \mathrm{~W}$

## Analog System- $\mathbf{P}_{\mathbf{A B}}$

Number of Quads used: $\mathrm{N}_{\text {QUADS }}=4$
Operating Mode
$P_{A B}=P_{A C 20}$
$P_{A B}=3.00 \mathrm{~mW}$
Standby Mode and Sleep Mode
$P_{A B}=0 W$

## Total Dynamic Power Consumption- $P_{\text {DYN }}$

Operating Mode
$\mathrm{P}_{\text {DYN }}=$ PCLOCK $+\mathrm{P}_{\text {S-CELL }}+\mathrm{P}_{\text {C-CELL }}+\mathrm{P}_{\text {NET }}+\mathrm{P}_{\text {INPUTS }}+\mathrm{P}_{\text {OUTPUTS }}+\mathrm{P}_{\text {MEMORY }}+\mathrm{P}_{\text {PLL }}+\mathrm{P}_{\text {NVM }}+\mathrm{P}_{\text {XTL-OSC }}+\mathrm{P}_{\text {RC-OSC }}+\mathrm{P}_{\text {AB }}$
$P_{\text {DYN }}=41.28 \mathrm{~mW}+21.1 \mathrm{~mW}+4.35 \mathrm{~mW}+19.25 \mathrm{~mW}+1.30 \mathrm{~mW}+47.47 \mathrm{~mW}+1.38 \mathrm{~mW}+0+0+0.63 \mathrm{~mW}+3.30 \mathrm{~mW}+3.00 \mathrm{~mW}$
$P_{\text {DYN }}=143.06 \mathrm{~mW}$
Standby Mode
$P_{\text {DYN }}=P_{\text {XTL-OSC }}$
$P_{\text {DYN }}=0.63 \mathrm{~mW}$

## Fusion Family of Mixed-Signal Flash FPGAs

## Sleep Mode

$P_{\text {DYN }}=0 \mathrm{~W}$

## Total Static Power Consumption-P ${ }_{\text {StAT }}$

Number of Quads used: $\mathrm{N}_{\text {QUADS }}=4$
Number of NVM blocks available AFS600: $\mathrm{N}_{\text {NVM-BLOCKS }}=2$
Number of Input pins used: $\mathrm{N}_{\text {INPUTS }}=30$
Number of Output pins used: $\mathrm{N}_{\text {OUTPUTS }}=40$
Operating Mode
$\mathrm{P}_{\text {STAT }}=\mathrm{P}_{\mathrm{DC} 1}+\left(\mathrm{N}_{\text {NVM-BLOCKS }} * \mathrm{P}_{\mathrm{DC} 4}\right)+\mathrm{P}_{\mathrm{DC5}}+\left(\mathrm{N}_{\mathrm{QUADS}} * \mathrm{P}_{\mathrm{DC} 6}\right)+\left(\mathrm{N}_{\text {INPUTS }} * P_{\mathrm{DC}}\right)+\left(\mathrm{N}_{\text {OUTPUTS }} * P_{\mathrm{DC}}\right)$
$P_{\text {STAT }}=7.50 \mathrm{~mW}+(2$ * 1.19 mW$)+8.25 \mathrm{~mW}+(4$ * 3.30 mW$)+(30$ * 0.00$)+(40$ * 0.00$)$
$P_{\text {STAT }}=31.33 \mathrm{~mW}$
Standby Mode
$P_{\text {STAT }}=P_{\text {DC2 }}$
$P_{\text {STAT }}=0.03 \mathrm{~mW}$

## Sleep Mode

$P_{\text {STAT }}=P_{\text {DC3 }}$
$P_{\text {STAT }}=0.03 \mathrm{~mW}$

## Total Power Consumption-P Ptotal

In operating mode, the total power consumption of the device is 174.39 mW :

$$
\begin{aligned}
& \mathrm{P}_{\text {TOTAL }}=\mathrm{P}_{\text {STAT }}+\mathrm{P}_{\text {DYN }} \\
& \mathrm{P}_{\text {TOTAL }}=143.06 \mathrm{~mW}+31.33 \mathrm{~mW} \\
& \mathrm{P}_{\text {TOTAL }}=174.39 \mathrm{~mW}
\end{aligned}
$$

In standby mode, the total power consumption of the device is limited to 0.66 mW :

$$
\begin{aligned}
& \mathrm{P}_{\text {TOTAL }}=\mathrm{P}_{\text {STAT }}+\mathrm{P}_{\text {DYN }} \\
& \mathrm{P}_{\text {TOTAL }}=0.03 \mathrm{~mW}+0.63 \mathrm{~mW} \\
& \mathrm{P}_{\text {TOTAL }}=0.66 \mathrm{~mW}
\end{aligned}
$$

In sleep mode, the total power consumption of the device drops as low as 0.03 mW :

$$
\begin{aligned}
& \mathrm{P}_{\text {TOTAL }}=\mathrm{P}_{\text {STAT }}+\mathrm{P}_{\text {DYN }} \\
& \mathrm{P}_{\text {TOTAL }}=0.03 \mathrm{~mW}
\end{aligned}
$$

Fusion Family of Mixed-Signal Flash FPGAs

## Power Consumption

Table 3-15 • Power Consumption

| Parameter | Description | Condition | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Crystal Oscillator |  |  |  |  |  |  |
| $I_{\text {STBXTAL }}$ | Standby Current of Crystal Oscillator |  |  | 10 |  | $\mu \mathrm{A}$ |
| IDYNXTAL | Operating Current | RC |  | 0.6 |  | mA |
|  |  | 0.032-0.2 |  | 0.6 |  | mA |
|  |  | 0.2-2.0 |  | 0.6 |  | mA |
|  |  | 2.0-20.0 |  | 0.6 |  | mA |
| RC Oscillator |  |  |  |  |  |  |
| $I_{\text {DYNRC }}$ | Operating Current |  |  | 1 |  | mA |
| ACM |  |  |  |  |  |  |
|  | Operating Current (Fixed Clock) |  |  | 200 |  | $\mu \mathrm{A} / \mathrm{MHz}$ |
|  | Operating Current (User Clock) |  |  | 30 |  | $\mu \mathrm{A}$ |
|  |  |  |  |  |  |  |
| NVM System |  |  |  |  |  |  |
|  | NVM Array Operating Power |  |  |  |  |  |
|  |  | Idle |  | 795 |  | $\mu \mathrm{A}$ |
|  |  | Read operation |  | See <br> Table 3-12 on page 3-11. |  | See <br> Table 3-12 on page 3-11. |
|  |  | Erase |  | 900 |  | $\mu \mathrm{A}$ |
|  |  | Write |  | 900 |  | $\mu \mathrm{A}$ |
| $\mathrm{P}_{\text {NVMCTRL }}$ | NVM Controller Operating Power |  |  | 20 |  | $\mathrm{uW} / \mathrm{MHz}$ |

## Package Pin Assignments

## 108-Pin QFN



Figure 4-1 • 108-Pin QFN (Top View)

## Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

| 108-Pin QFN |  | 108-Pin QFN |  |
| :---: | :---: | :---: | :---: |
| Pin Number | AFS090 Function | Pin Number | AFS090 Function |
| A1 | NC | A39 | GND |
| A2 | GNDQ | A40 | GCB1/IO35PDB1V0 |
| A3 | GAA2/IO52PDB3V0 | A41 | GCB2/IO33PDB1V0 |
| A4 | GND | A42 | GBA2/IO31PDB1V0 |
| A5 | GFA1/IO47PDB3V0 | A43 | NC |
| A6 | GEB1/IO45PDB3V0 | A44 | GBA1/IO30RSB0V0 |
| A7 | $\mathrm{V}_{\text {coosc }}$ | A45 | GBB1/IO28RSB0V0 |
| A8 | XTAL2 | A46 | GND |
| A9 | GEA1/IO44PPB3V0 | A47 | $\mathrm{V}_{\text {CC }}$ |
| A10 | GEA0/IO44NPB3V0 | A48 | GBC 1/IO26RSB0V0 |
| A11 | GEB2/IO42PDB3V0 | A49 | IO21RSBOV0 |
| A12 | $\mathrm{V}_{\text {CCNVM }}$ | A50 | IO19RSBOV0 |
| A13 | $\mathrm{V}_{\text {CC15A }}$ | A51 | IO09RSB0V0 |
| A14 | PCAP | A52 | GAC0/IO04RSB0V0 |
| A15 | NC | A53 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| A16 | GNDA | A54 | GND |
| A17 | AVO | A55 | GAB0/IO02RSB0V0 |
| A18 | AG0 | A56 | GAA0/IOOORSB0V0 |
| A19 | ATRTNO | B1 | $\mathrm{V}_{\text {COMPLA }}$ |
| A20 | AT1 | B2 | VMV3 |
| A21 | AC1 | B3 | GAB2/IO52NDB3V0 |
| A22 | AV2 | B4 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 3$ |
| A23 | AG2 | B5 | GFA0/IO47NDB3V0 |
| A24 | AT2 | B6 | GEB0/IO45NDB3V0 |
| A25 | AT3 | B7 | XTAL1 |
| A26 | AC3 | B8 | GNDOSC |
| A27 | GNDAQ | B9 | GEC2/IO43PSB3V0 |
| A28 | ADCGNDREF | B10 | GEA2/IO42NDB3V0 |
| A29 | NC | B11 | $\mathrm{V}_{\text {CC }}$ |
| A30 | GNDA | B11 | $\mathrm{V}_{\text {CC }}$ |
| A31 | PTEM | B12 | GNDNVM |
| A32 | GNDNVM | B13 | NCAP |
| A33 | $V_{\text {PUMP }}$ | B14 | $\mathrm{V}_{\text {CC33PMP }}$ |
| A34 | TCK | B15 | $V_{\text {CC33N }}$ |
| A35 | TMS | B16 | GNDAQ |
| A36 | TRST | B17 | AC0 |
| A37 | GDB1/IO39PSB1V0 | B18 | ATO |
| A38 | GDC 1/IO38PDB1V0 | B19 | AG1 |


| 108-Pin QFN |  |
| :---: | :---: |
| Pin Number | AFS090 Function |
| B20 | AV1 |
| B21 | AC2 |
| B22 | ATRTN1 |
| B23 | AG3 |
| B24 | AV3 |
| B25 | $V_{\text {CC33ACAP }}$ |
| B26 | VAREF |
| B27 | PUB |
| B28 | $V_{\text {CC33A }}$ |
| B29 | PTBASE |
| B30 | $\mathrm{V}_{\text {CCNVM }}$ |
| B31 | $\mathrm{V}_{\text {CC }}$ |
| B31 | $\mathrm{V}_{\text {CC }}$ |
| B32 | TDI |
| B33 | TDO |
| B34 | $\mathrm{V}_{\text {JTAG }}$ |
| B35 | GDC0/IO38NDB1V0 |
| B36 | $\mathrm{V}_{\text {CII }} 1$ |
| B37 | GCB0/IO35NDB1V0 |
| B38 | GCC2/IO33NDB1V0 |
| B39 | GBB2/IO31NDB1V0 |
| B40 | VMV1 |
| B41 | GNDQ |
| B42 | GBA0/IO29RSB0V0 |
| B43 | $\mathrm{V}_{\text {CII }} \mathrm{BO}$ |
| B44 | GBB0/IO27RSB0V0 |
| B45 | GBC0/IO25RSB0V0 |
| B46 | IO20RSB0V0 |
| B47 | IO10RSB0V0 |
| B48 | GAC1/IO05RSB0V0 |
| B49 | GAB1/IO03RSB0V0 |
| B50 | $\mathrm{V}_{\text {CC }}$ |
| B51 | GAA1/IO01RSB0V0 |
| B52 | $\mathrm{V}_{\text {CCPLA }}$ |

## 180-Pin QFN



Figure 4-2 • 180-Pin QFN (Top View)

## Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

Fusion Family of Mixed-Signal Flash FPGAs

| 180-Pin QFN |  |
| :---: | :---: |
| Pin Number | AFS090 Function |
| A1 | GNDQ |
| A2 | VMV3 |
| A3 | GAB2/IO52NDB3V0 |
| A4 | GFA2/IO51NDB3V0 |
| A5 | GFC2/IO50NDB3V0 |
| A6 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 3$ |
| A7 | GFA1/IO47PPB3V0 |
| A8 | GEB0/IO45NDB3V0 |
| A9 | XTAL1 |
| A10 | GNDOSC |
| A11 | GEC2/IO43PPB3V0 |
| A12 | IO43NPB3V0 |
| A13 | NC |
| A14 | GNDNVM |
| A15 | PCAP |
| A16 | $V_{\text {CC33PMP }}$ |
| A17 | NC |
| A18 | AV0 |
| A19 | AG0 |
| A20 | ATRTN0 |
| A21 | AG1 |
| A22 | AC1 |
| A23 | AV2 |
| A24 | AT2 |
| A25 | AT3 |
| A26 | AC3 |
| A27 | AV4 |
| A28 | AC4 |
| A29 | AT4 |
| A30 | NC |
| A31 | NC |
| A32 | ADCGNDREF |
| A33 | $V_{\text {CC33A }}$ |
| A34 | GNDA |
| A35 | PTBASE |
| A36 | $\mathrm{V}_{\text {CCNVM }}$ |
| A37 | $\mathrm{V}_{\text {PUMP }}$ |


| 180-Pin QFN |  |
| :---: | :---: |
| Pin Number | AFS090 Function |
| A38 | TDI |
| A39 | TDO |
| A40 | $\mathrm{V}_{\text {JTAG }}$ |
| A41 | GDB1/IO39PPB1V0 |
| A42 | GDC1/IO38PDB1V0 |
| A43 | $\mathrm{V}_{\text {CC }}$ |
| A44 | GCB0/IO35NPB1V0 |
| A45 | GCC1/IO34PDB1V0 |
| A46 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$ |
| A47 | GBC2/IO32PPB1V0 |
| A48 | VMV1 |
| A49 | NC |
| A50 | GBA0/IO29RSB0V0 |
| A51 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$ |
| A52 | GBB0/IO27RSB0V0 |
| A53 | GBC 1/IO26RSB0V0 |
| A54 | IO24RSB0V0 |
| A55 | IO21RSB0V0 |
| A56 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| A57 | IO15RSB0V0 |
| A58 | IO10RSB0V0 |
| A59 | IOO7RSBOV0 |
| A60 | GAC0/IO04RSB0V0 |
| A61 | GAB1/IO03RSB0V0 |
| A62 | $\mathrm{V}_{\mathrm{CC}}$ |
| A63 | GAA1/IO01RSB0V0 |
| A64 | NC |
| B1 | $\mathrm{V}_{\text {COMPLA }}$ |
| B2 | GAA2/IO52PDB3V0 |
| B3 | GAC2/IO51PDB3V0 |
| B4 | GFB2/IO50PDB3V0 |
| B5 | $\mathrm{V}_{\mathrm{CC}}$ |
| B6 | GFC0/IO49NDB3V0 |
| B7 | GEB1/IO45PDB3V0 |
| B8 | $\mathrm{V}_{\text {ccosc }}$ |
| B9 | XTAL2 |
| B10 | GEA0/IO44NDB3V0 |


| 180-Pin QFN |  |
| :---: | :---: |
| Pin Number | AFS090 Function |
| B11 | GEB2/IO42PDB3V0 |
| B12 | $\mathrm{V}_{\mathrm{CC}}$ |
| B12 | $\mathrm{V}_{\mathrm{CC}}$ |
| B13 | $\mathrm{V}_{\text {CCNVM }}$ |
| B14 | $\mathrm{V}_{\text {CC15A }}$ |
| B15 | NCAP |
| B16 | $\mathrm{V}_{\text {CC33N }}$ |
| B17 | GNDAQ |
| B18 | AC0 |
| B19 | ATO |
| B20 | AT1 |
| B21 | AV1 |
| B22 | AC2 |
| B23 | ATRTN1 |
| B24 | AG3 |
| B25 | AV3 |
| B26 | AG4 |
| B27 | ATRTN2 |
| B28 | NC |
| B29 | $V_{\text {CC33ACAP }}$ |
| B30 | VAREF |
| B31 | PUB |
| B32 | PTEM |
| B33 | GNDNVM |
| B34 | $\mathrm{V}_{\mathrm{CC}}$ |
| B34 | $\mathrm{V}_{\mathrm{CC}}$ |
| B35 | TCK |
| B36 | TMS |
| B37 | TRST |
| B38 | GDB2/IO41PSB1V0 |
| B39 | GDC0/IO38NDB1V0 |
| B40 | $\mathrm{V}_{\text {CCI }} \mathrm{B1}$ |
| B41 | GCA1/IO36PDB1V0 |
| B42 | GCC0/IO34NDB1V0 |
| B43 | GCB2/IO33PSB1V0 |
| B44 | $\mathrm{V}_{\text {CC }}$ |
| B45 | GBA2/IO31PDB1V0 |


| 180-Pin QFN |  |
| :---: | :---: |
| Pin Number | AFS090 Function |
| B46 | GNDQ |
| B47 | GBA1/IO30RSB0V0 |
| B48 | GBB1/IO28RSB0V0 |
| B49 | $\mathrm{V}_{\text {CC }}$ |
| B50 | GBC0/IO25RSB0V0 |
| B51 | IO23RSB0V0 |
| B52 | IO20RSB0V0 |
| B53 | $\mathrm{V}_{\text {CC }}$ |
| B54 | IO11RSB0V0 |
| B55 | IO08RSB0V0 |
| B56 | GAC 1/IO05RSB0V0 |
| B57 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| B58 | GAB0/IO02RSB0V0 |
| B59 | GAA0/IOOORSBOVO |
| B60 | $\mathrm{V}_{\text {CCPLA }}$ |
| C1 | NC |
| C2 | NC |
| C3 | GND |
| C4 | NC |
| C5 | GFC 1/IO49PDB3V0 |
| C6 | GFA0/IO47NPB3V0 |
| C7 | $\mathrm{V}_{\text {CCI }} 33$ |
| C8 | GND |
| C9 | GEA1/IO44PDB3V0 |
| C10 | GEA2/IO42NDB3V0 |
| C11 | NC |
| C12 | NC |
| C13 | GND |
| C14 | NC |
| C15 | NC |
| C16 | GNDA |
| C17 | NC |
| C18 | NC |
| C19 | NC |
| C20 | NC |
| C21 | AG2 |
| C22 | NC |


| 180-Pin QFN |  |
| :---: | :---: |
| Pin Number | AFS090 Function |
| C23 | NC |
| C24 | NC |
| C25 | NC |
| C26 | GNDAQ |
| C27 | NC |
| C28 | NC |
| C29 | NC |
| C30 | NC |
| C31 | GND |
| C32 | NC |
| C33 | NC |
| C34 | NC |
| C35 | GND |
| C36 | GDB0/IO39NPB1V0 |
| C37 | GDA1/IO37NSB1V0 |
| C38 | GCA0/IO36NDB1V0 |
| C39 | GCB1/IO35PPB1V0 |
| C40 | GND |
| C41 | GCA2/IO32NPB1V0 |
| C42 | GBB2/IO31NDB1V0 |
| C43 | NC |
| C44 | NC |
| C45 | NC |
| C46 | GND |
| C47 | NC |
| C48 | IO22RSB0V0 |
| C49 | GND |
| C50 | IO13RSB0V0 |
| C51 | IO09RSB0V0 |
| C52 | IO06RSB0V0 |
| C53 | GND |
| C54 | NC |
| C55 | NC |
| C56 | NC |

Fusion Family of Mixed-Signal Flash FPGAs

| 180-Pin QFN |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| A1 | GNDQ |
| A2 | VMV3 |
| A3 | IO74NDB3V0 |
| A4 | IO71NDB3V0 |
| A5 | IO69NPB3V0 |
| A6 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 3$ |
| A7 | GFB1/IO67PPB3V0 |
| A8 | NC |
| A9 | XTAL1 |
| A10 | GNDOSC |
| A11 | GEA1/IO61PPB3V0 |
| A12 | GEA0/IO61NPB3V0 |
| A13 | $\mathrm{V}_{\text {CCI }} \mathrm{B} 3$ |
| A14 | GNDNVM |
| A15 | PCAP |
| A16 | $\mathrm{V}_{\text {CC33PMP }}$ |
| A17 | NC |
| A18 | AVO |
| A19 | AGO |
| A20 | ATRTN0 |
| A21 | AG1 |
| A22 | AC1 |
| A23 | AV2 |
| A24 | AT2 |
| A25 | AT3 |
| A26 | AC3 |
| A27 | AV4 |
| A28 | AC4 |
| A29 | AT4 |
| A30 | AG5 |
| A31 | AV5 |
| A32 | ADCGNDREF |
| A33 | $V_{\text {CC33A }}$ |
| A34 | GNDA |
| A35 | PTBASE |
| A36 | $\mathrm{V}_{\text {CCNVM }}$ |
| A37 | $V_{\text {PUMP }}$ |
| A38 | TDI |


| 180-Pin QFN |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| A39 | TDO |
| A40 | $\mathrm{V}_{\text {JTAG }}$ |
| A41 | GDA1/IO54PPB1V0 |
| A42 | GDB1/IO53PDB1V0 |
| A43 | $\mathrm{V}_{\text {CC }}$ |
| A44 | GCB0/IO48NPB1V0 |
| A45 | GCC1/IO47PDB1V0 |
| A46 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$ |
| A47 | GBB2/IO41PPB1V0 |
| A48 | VMV1 |
| A49 | NC |
| A50 | GBB1/IO37RSB0V0 |
| A51 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| A52 | GBC0/IO34RSB0V0 |
| A53 | IO33RSB0V0 |
| A54 | IO29RSB0V0 |
| A55 | IO26RSB0V0 |
| A56 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| A57 | IO21RSB0V0 |
| A58 | IO13RSB0V0 |
| A59 | IO10RSB0V0 |
| A60 | IO06RSBOVO |
| A61 | GAC1/IO05RSB0V0 |
| A62 | $\mathrm{V}_{\text {CC }}$ |
| A63 | GAB0/IO02RSB0V0 |
| A64 | NC |
| B1 | $\mathrm{V}_{\text {COMPLA }}$ |
| B2 | GAC2/IO74PDB3V0 |
| B3 | GFA2/IO71PDB3V0 |
| B4 | GFB2/IO70PSB3V0 |
| B5 | $\mathrm{V}_{\text {CC }}$ |
| B6 | GFC0/IO68NDB3V0 |
| B7 | NC |
| B8 | $\mathrm{V}_{\text {coosc }}$ |
| B9 | XTAL2 |
| B10 | GFA0/IO66NDB3V0 |
| B11 | IO60NDB3V0 |
| B12 | $\mathrm{V}_{\text {CC }}$ |


| 180-Pin QFN |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| B12 | $\mathrm{V}_{\mathrm{CC}}$ |
| B13 | $\mathrm{V}_{\text {CCNVM }}$ |
| B14 | $\mathrm{V}_{\text {CC15A }}$ |
| B15 | NCAP |
| B16 | $V_{\text {CC33N }}$ |
| B17 | GNDAQ |
| B18 | ACO |
| B19 | ATO |
| B20 | AT1 |
| B21 | AV1 |
| B22 | AC2 |
| B23 | ATRTN1 |
| B24 | AG3 |
| B25 | AV3 |
| B26 | AG4 |
| B27 | ATRTN2 |
| B28 | AC5 |
| B29 | $\mathrm{V}_{\text {CC33ACAP }}$ |
| B30 | VAREF |
| B31 | PUB |
| B32 | PTEM |
| B33 | GNDNVM |
| B34 | $\mathrm{V}_{\text {CC }}$ |
| B34 | $\mathrm{V}_{\mathrm{CC}}$ |
| B35 | TCK |
| B36 | TMS |
| B37 | TRST |
| B38 | GDA2/IO55PSB1V0 |
| B39 | GDB0/IO53NDB1V0 |
| B40 | $\mathrm{V}_{\mathrm{CcI}} \mathrm{B} 1$ |
| B41 | GCA1/IO49PDB1V0 |
| B42 | GCC0/IO47NDB1V0 |
| B43 | GBC2/IO42PSB1V0 |
| B44 | $\mathrm{V}_{\text {CC }}$ |
| B45 | GBA2/IO40PDB1V0 |
| B46 | GNDQ |
| B47 | GBA0/IO38RSB0V0 |
| B48 | GBC 1/IO35RSB0V0 |


| 180-Pin QFN |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| B49 | $\mathrm{V}_{\text {CC }}$ |
| B50 | IO31RSB0V0 |
| B51 | IO28RSB0VO |
| B52 | IO25RSB0V0 |
| B53 | $\mathrm{V}_{\text {CC }}$ |
| B54 | IO14RSB0V0 |
| B55 | IO11RSBOV0 |
| B56 | IO08RSB0V0 |
| B57 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| B58 | GAC0/IO04RSB0V0 |
| B59 | GAA1/IO01RSB0V0 |
| B60 | $\mathrm{V}_{\text {CCPLA }}$ |
| C1 | NC |
| C2 | $\mathrm{V}_{\text {CCI }} \mathrm{B3}$ |
| C3 | GND |
| C4 | GFC2/IO69PPB3V0 |
| C5 | GFC 1/IO68PDB3V0 |
| C6 | GFB0/IO67NPB3V0 |
| C7 | NC |
| C8 | GND |
| C9 | GFA1/IO66PDB3V0 |
| C10 | GEC2/IO60PDB3V0 |
| C11 | GEA2/IO58PSB3V0 |
| C12 | NC |
| C13 | GND |
| C14 | NC |
| C15 | NC |
| C16 | GNDA |
| C17 | NC |
| C18 | NC |
| C19 | NC |
| C20 | NC |
| C21 | AG2 |
| C22 | NC |
| C23 | NC |
| C24 | NC |
| C25 | AT5 |
| C26 | GNDAQ |


| 180-Pin QFN |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| C27 | NC |
| C28 | NC |
| C29 | NC |
| C30 | NC |
| C31 | GND |
| C32 | NC |
| C33 | NC |
| C34 | NC |
| C35 | GND |
| C36 | GDA0/IO54NPB1V0 |
| C37 | GDC0/IO52NSB1V0 |
| C38 | GCA0/IO49NDB1V0 |
| C39 | GCB1/IO48PPB1V0 |
| C40 | GND |
| C41 | IO41NPB1V0 |
| C42 | IO40NDB1V0 |
| C43 | NC |
| C44 | GBA1/IO39RSB0V0 |
| C45 | GBB0/IO36RSB0V0 |
| C46 | GND |
| C47 | IO30RSB0V0 |
| C48 | IO27RSB0V0 |
| C49 | GND |
| C50 | IO16RSB0V0 |
| C51 | IO12RSB0V0 |
| C52 | IO09RSB0V0 |
| C53 | GND |
| C54 | GAB1/IO03RSB0V0 |
| C55 | GAA0/IOOORSB0V0 |
| C56 | NC |

## 208-Pin PQFP



Figure 4-3 • 208-Pin PQFP (Top View)

## Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

| 208-Pin PQFP |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| 1 | $V_{\text {CCPLA }}$ |
| 2 | $V_{\text {COMPLA }}$ |
| 3 | GNDQ |
| 4 | VMV3 |
| 5 | GAA2/IO76PDB3V0 |
| 6 | IO76NDB3V0 |
| 7 | GAB2/IO75PDB3V0 |
| 8 | IO75NDB3V0 |
| 9 | NC |
| 10 | NC |
| 11 | VCC |
| 12 | GND |
| 13 | $\mathrm{V}_{\text {CCI }} \mathrm{B}$ |
| 14 | IO72PDB3V0 |
| 15 | IO72NDB3V0 |
| 16 | GFA2/IO71PDB3V0 |
| 17 | IO71NDB3V0 |
| 18 | GFB2/IO70PDB3V0 |
| 19 | IO70NDB3V0 |
| 20 | GFC2/IO69PDB3V0 |
| 21 | IO69NDB3V0 |
| 22 | $\mathrm{V}_{\text {CC }}$ |
| 23 | GND |
| 24 | $\mathrm{V}_{\text {CCI }} 3$ |
| 25 | GFC 1/IO68PDB3V0 |
| 26 | GFC0/IO68NDB3V0 |
| 27 | GFB1/IO67PDB3V0 |
| 28 | GFB0/IO67NDB3V0 |
| 29 | $\mathrm{V}_{\text {ccosc }}$ |
| 30 | XTAL1 |
| 31 | XTAL2 |
| 32 | GNDOSC |
| 33 | GEB1/IO62PDB3V0 |
| 34 | GEB0/IO62NDB3V0 |
| 35 | GEA1/IO61PDB3V0 |
| 36 | GEA0/IO61NDB3V0 |


| 208-Pin PQFP |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| 37 | GEC2/IO60PDB3V0 |
| 38 | IO60NDB3V0 |
| 39 | GND |
| 40 | $\mathrm{V}_{\text {CII }}{ }^{\text {B3 }}$ |
| 41 | GEB2/IO59PDB3V0 |
| 42 | IO59NDB3V0 |
| 43 | GEA2/IO58PDB3V0 |
| 44 | IO58NDB3V0 |
| 45 | $\mathrm{V}_{\mathrm{CC}}$ |
| 46 | $\mathrm{V}_{\text {CCNVM }}$ |
| 47 | GNDNVM |
| 48 | GND |
| 49 | $\mathrm{V}_{\text {CC15A }}$ |
| 50 | PCAP |
| 51 | NCAP |
| 52 | $V_{\text {CC33PMP }}$ |
| 53 | $\mathrm{V}_{\text {CC33N }}$ |
| 54 | GNDA |
| 55 | GNDAQ |
| 56 | NC |
| 57 | NC |
| 58 | NC |
| 59 | NC |
| 60 | NC |
| 61 | NC |
| 62 | NC |
| 63 | NC |
| 64 | NC |
| 65 | AVO |
| 66 | ACO |
| 67 | AG0 |
| 68 | ATO |
| 69 | ATRTN0 |
| 70 | AT1 |
| 71 | AG1 |
| 72 | AC1 |


| 208-Pin PQFP |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| 73 | AV1 |
| 74 | AV2 |
| 75 | AC2 |
| 76 | AG2 |
| 77 | AT2 |
| 78 | ATRTN1 |
| 79 | AT3 |
| 80 | AG3 |
| 81 | AC3 |
| 82 | AV3 |
| 83 | AV4 |
| 84 | AC4 |
| 85 | AG4 |
| 86 | AT4 |
| 87 | ATRTN2 |
| 88 | AT5 |
| 89 | AG5 |
| 90 | AC5 |
| 91 | AV5 |
| 92 | NC |
| 93 | NC |
| 94 | NC |
| 95 | NC |
| 96 | NC |
| 97 | NC |
| 98 | NC |
| 99 | NC |
| 100 | NC |
| 101 | GNDAQ |
| 102 | $V_{\text {CC33ACAP }}$ |
| 103 | ADCGNDREF |
| 104 | $V_{\text {AREF }}$ |
| 105 | PUB |
| 106 | $V_{\text {CC33A }}$ |
| 107 | GNDA |
| 108 | PTEM |

Fusion Family of Mixed-Signal Flash FPGAs

| 208-Pin PQFP |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| 109 | PTBASE |
| 110 | GNDNVM |
| 111 | $\mathrm{V}_{\text {CCNVM }}$ |
| 112 | $\mathrm{V}_{\text {CC }}$ |
| 113 | $V_{\text {PUMP }}$ |
| 114 | GNDQ |
| 115 | VMV1 |
| 116 | TCK |
| 117 | TDI |
| 118 | TMS |
| 119 | TDO |
| 120 | TRST |
| 121 | $\mathrm{V}_{\text {JTAG }}$ |
| 122 | IO57NDB1V0 |
| 123 | GDC2/IO57PDB1V0 |
| 124 | IO56NDB1V0 |
| 125 | GDB2/IO56PDB1V0 |
| 126 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$ |
| 127 | GND |
| 128 | IO55NDB1V0 |
| 129 | GDA2/IO55PDB1V0 |
| 130 | GDA0/IO54NDB1V0 |
| 131 | GDA1/IO54PDB1V0 |
| 132 | GDB0/IO53NDB1V0 |
| 133 | GDB1/IO53PDB1V0 |
| 134 | GDC0/IO52NDB1V0 |
| 135 | GDC1/IO52PDB1V0 |
| 136 | IO51NSB1V0 |
| 137 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$ |
| 138 | GND |
| 139 | $\mathrm{V}_{\mathrm{CC}}$ |
| 140 | IO50NDB1V0 |
| 141 | IO50PDB1V0 |
| 142 | GCA0/IO49NDB1V0 |
| 143 | GCA1/IO49PDB1V0 |
| 144 | GCB0/IO48NDB1V0 |


| 208-Pin PQFP |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| 145 | GCB1/IO48PDB1V0 |
| 146 | GCC0/IO47NDB1V0 |
| 147 | GCC 1/IO47PDB1V0 |
| 148 | IO42NDB1V0 |
| 149 | GBC2/IO42PDB1V0 |
| 150 | $\mathrm{V}_{\text {CCI }} 1$ |
| 151 | GND |
| 152 | $\mathrm{V}_{\mathrm{CC}}$ |
| 153 | IO41NDB1V0 |
| 154 | GBB2/IO41PDB1V0 |
| 155 | IO40NDB1V0 |
| 156 | GBA2/IO40PDB1V0 |
| 157 | GBA1/IO39RSB0V0 |
| 158 | GBA0/IO38RSB0V0 |
| 159 | GBB1/IO37RSB0V0 |
| 160 | GBB0/IO36RSB0V0 |
| 161 | GBC 1/IO35RSB0V0 |
| 162 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| 163 | GND |
| 164 | $\mathrm{V}_{\mathrm{CC}}$ |
| 165 | GBC0/IO34RSB0V0 |
| 166 | IO33RSB0V0 |
| 167 | IO32RSB0V0 |
| 168 | IO31RSB0V0 |
| 169 | IO30RSB0V0 |
| 170 | IO29RSB0V0 |
| 171 | IO28RSB0V0 |
| 172 | IO27RSB0V0 |
| 173 | IO26RSB0V0 |
| 174 | IO25RSB0V0 |
| 175 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| 176 | GND |
| 177 | $\mathrm{V}_{\text {CC }}$ |
| 178 | IO24RSB0V0 |
| 179 | IO23RSB0V0 |
| 180 | IO22RSBOV0 |


| 208-Pin PQFP |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| 181 | IO21RSB0V0 |
| 182 | IO20RSB0V0 |
| 183 | IO19RSB0V0 |
| 184 | IO18RSB0V0 |
| 185 | IO17RSB0V0 |
| 186 | IO16RSB0V0 |
| 187 | IO15RSB0V0 |
| 188 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| 189 | GND |
| 190 | $\mathrm{V}_{\text {CC }}$ |
| 191 | IO14RSB0V0 |
| 192 | IO13RSB0V0 |
| 193 | IO12RSB0V0 |
| 194 | IO11RSB0V0 |
| 195 | IO10RSB0V0 |
| 196 | IO09RSB0V0 |
| 197 | IO08RSB0V0 |
| 198 | IO07RSB0V0 |
| 199 | IO06RSBOV0 |
| 200 | GAC1/IO05RSB0V0 |
| 201 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| 202 | GND |
| 203 | $\mathrm{V}_{\text {CC }}$ |
| 204 | GAC0/IO04RSB0V0 |
| 205 | GAB1/IO03RSB0V0 |
| 206 | GAB0/IO02RSB0V0 |
| 207 | GAA1/IO01RSB0V0 |
| 208 | GAA0/IOOORSB0V0 |


| 208-Pin PQFP |  | 208-Pin PQFP |  | 208-Pin PQFP |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pin Number | AFS600 Function | Pin Number | AFS600 Function | Pin Number | AFS600 Function |
| 1 | $\mathrm{V}_{\text {CCPLA }}$ | 37 | GEB1/IO62PDB4V0 | 73 | AV3 |
| 2 | $\mathrm{V}_{\text {COMPLA }}$ | 38 | GEB0/IO62NDB4V0 | 74 | AV4 |
| 3 | GAA2/IO85PDB4V0 | 39 | GEA1/IO61PDB4V0 | 75 | AC4 |
| 4 | IO85NDB4V0 | 40 | GEA0/IO61NDB4V0 | 76 | AG4 |
| 5 | GAB2/IO84PDB4V0 | 41 | GEC2/IO60PDB4V0 | 77 | AT4 |
| 6 | IO84NDB4V0 | 42 | IO60NDB4V0 | 78 | ATRTN2 |
| 7 | GAC2/IO83PDB4V0 | 43 | VMV4 | 79 | AT5 |
| 8 | IO83NDB4V0 | 44 | GNDQ | 80 | AG5 |
| 9 | IO77PDB4V0 | 45 | $\mathrm{V}_{\mathrm{CC}}$ | 81 | AC5 |
| 10 | IO77NDB4V0 | 46 | $\mathrm{V}_{\text {CCNVM }}$ | 82 | AV5 |
| 11 | IO76PDB4V0 | 47 | GNDNVM | 83 | AV6 |
| 12 | IO76NDB4V0 | 48 | GND | 84 | AC6 |
| 13 | $\mathrm{V}_{\text {CC }}$ | 49 | $\mathrm{V}_{\text {CC15A }}$ | 85 | AG6 |
| 14 | GND | 50 | PCAP | 86 | AT6 |
| 15 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B4}$ | 51 | NCAP | 87 | ATRTN3 |
| 16 | GFA2/IO75PDB4V0 | 52 | $V_{\text {CC33PMP }}$ | 88 | AT7 |
| 17 | IO75NDB4V0 | 53 | $\mathrm{V}_{\text {CC33N }}$ | 89 | AG7 |
| 18 | GFC2/IO73PDB4V0 | 54 | GNDA | 90 | AC7 |
| 19 | IO73NDB4V0 | 55 | GNDAQ | 91 | AV7 |
| 20 | $\mathrm{V}_{\text {coosc }}$ | 56 | AV0 | 92 | AV8 |
| 21 | XTAL1 | 57 | AC0 | 93 | AC8 |
| 22 | XTAL2 | 58 | AG0 | 94 | AG8 |
| 23 | GNDOSC | 59 | ATO | 95 | AT8 |
| 24 | GFC 1/IO72PDB4V0 | 60 | ATRTN0 | 96 | ATRTN4 |
| 25 | GFC0/IO72NDB4V0 | 61 | AT1 | 97 | AT9 |
| 26 | GFB1/IO71PDB4V0 | 62 | AG1 | 98 | AG9 |
| 27 | GFB0/IO71NDB4V0 | 63 | AC1 | 99 | AC9 |
| 28 | GFA1/IO70PDB4V0 | 64 | AV1 | 100 | AV9 |
| 29 | GFA0/IO70NDB4V0 | 65 | AV2 | 101 | GNDAQ |
| 30 | IO69PDB4V0 | 66 | AC2 | 102 | $V_{\text {CC33ACAP }}$ |
| 31 | IO69NDB4V0 | 67 | AG2 | 103 | ADCGNDREF |
| 32 | $\mathrm{V}_{\text {CC }}$ | 68 | AT2 | 104 | VAREF |
| 33 | GND | 69 | ATRTN1 | 105 | PUB |
| 34 | $\mathrm{V}_{\text {CCI }}{ }^{\text {B4 }}$ | 70 | AT3 | 106 | $\mathrm{V}_{\text {CC33A }}$ |
| 35 | GEC 1/IO63PDB4V0 | 71 | AG3 | 107 | GNDA |
| 36 | GEC0/IO63NDB4V0 | 72 | AC3 | 108 | PTEM |

Fusion Family of Mixed-Signal Flash FPGAs

| 208-Pin PQFP |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| 109 | PTBASE |
| 110 | GNDNVM |
| 111 | $\mathrm{V}_{\text {CCNVM }}$ |
| 112 | $\mathrm{V}_{\text {CC }}$ |
| 113 | $V_{\text {PUMP }}$ |
| 114 | NC |
| 115 | TCK |
| 116 | TDI |
| 117 | TMS |
| 118 | TDO |
| 119 | TRST |
| 120 | $V_{\text {JTAG }}$ |
| 121 | IO57NDB2V0 |
| 122 | GDC2/IO57PDB2V0 |
| 123 | IO56NDB2V0 |
| 124 | GDB2/IO56PDB2V0 |
| 125 | IO55NDB2V0 |
| 126 | GDA2/IO55PDB2V0 |
| 127 | GDA0/IO54NDB2V0 |
| 128 | GDA1/IO54PDB2V0 |
| 129 | $V_{\text {CCI }} 2$ |
| 130 | GND |
| 131 | $\mathrm{V}_{\mathrm{CC}}$ |
| 132 | GCA0/IO45NDB2V0 |
| 133 | GCA1/IO45PDB2V0 |
| 134 | GCB0/IO44NDB2V0 |
| 135 | GCB1/IO44PDB2V0 |
| 136 | GCC0/IO43NDB2V0 |
| 137 | GCC1/IO43PDB2V0 |
| 138 | IO42NDB2V0 |
| 139 | IO42PDB2V0 |
| 140 | IO41NDB2V0 |
| 141 | GCC2/IO41PDB2V0 |
| 142 | $\mathrm{V}_{\text {Cli }} \mathrm{B} 2$ |
| 143 | GND |
| 144 | $\mathrm{V}_{\text {CC }}$ |


| 208-Pin PQFP |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| 145 | IO40NDB2V0 |
| 146 | GCB2/IO40PDB2V0 |
| 147 | IO39NDB2V0 |
| 148 | GCA2/IO39PDB2V0 |
| 149 | IO31NDB2V0 |
| 150 | GBB2/IO31PDB2V0 |
| 151 | IO30NDB2V0 |
| 152 | GBA2/IO30PDB2V0 |
| 153 | VMV2 |
| 154 | GNDQ |
| 155 | $\mathrm{V}_{\text {COMPLB }}$ |
| 156 | $\mathrm{V}_{\text {CCPLB }}$ |
| 157 | VMV1 |
| 158 | GNDQ |
| 159 | GBB1/IO27PPB1V1 |
| 160 | GBA1/IO28PPB1V1 |
| 161 | GBB0/IO27NPB1V1 |
| 162 | GBA0/IO28NPB1V1 |
| 163 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$ |
| 164 | GND |
| 165 | $\mathrm{V}_{\mathrm{CC}}$ |
| 166 | GBC1/IO26PDB1V1 |
| 167 | GBC0/IO26NDB1V1 |
| 168 | IO24PPB1V1 |
| 169 | IO23PPB1V1 |
| 170 | IO24NPB1V1 |
| 171 | IO23NPB1V1 |
| 172 | IO22PPB1V0 |
| 173 | IO21PPB1V0 |
| 174 | IO22NPB1V0 |
| 175 | IO21NPB1V0 |
| 176 | IO20PSB1V0 |
| 177 | IO19PSB1V0 |
| 178 | IO14NSB0V1 |
| 179 | IO12PDB0V1 |
| 180 | IO12NDB0V1 |


| 208-Pin PQFP |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| 181 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$ |
| 182 | GND |
| 183 | $\mathrm{V}_{\mathrm{CC}}$ |
| 184 | IO10PPB0V1 |
| 185 | IO09PPB0V1 |
| 186 | IO10NPB0V1 |
| 187 | IO09NPB0V1 |
| 188 | IO08PPB0V1 |
| 189 | IO07PPB0V1 |
| 190 | IO08NPB0V1 |
| 191 | IO07NPB0V1 |
| 192 | IO06PPB0V0 |
| 193 | IO05PPB0V0 |
| 194 | IO06NPB0V0 |
| 195 | IO04PPB0V0 |
| 196 | IO05NPB0V0 |
| 197 | IO04NPB0V0 |
| 198 | GAC1/IO03PDB0V0 |
| 199 | GAC0/IO03NDB0V0 |
| 200 | $\mathrm{V}_{\text {Cli }} \mathrm{BO}$ |
| 201 | GND |
| 202 | $\mathrm{V}_{\mathrm{CC}}$ |
| 203 | GAB1/IO02PDB0V0 |
| 204 | GAB0/IO02NDB0V0 |
| 205 | GAA1/IO01PDB0V0 |
| 206 | GAA0/IO01NDB0V0 |
| 207 | GNDQ |
| 208 | VMVO |

## 256-Pin FBGA



Figure 4-4 • 256-Pin FBGA (Bottom View)

## Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS090 Function |
| A1 | GND |
| A2 | $\mathrm{V}_{\text {CII }} \mathrm{BO}$ |
| A3 | GAB0/IO02RSB0V0 |
| A4 | GAB1/IO03RSB0V0 |
| A5 | GND |
| A6 | IO07RSB0V0 |
| A7 | IO10RSB0V0 |
| A8 | IO11RSB0V0 |
| A9 | IO16RSB0V0 |
| A10 | IO17RSB0V0 |
| A11 | IO18RSB0V0 |
| A12 | GND |
| A13 | GBC0/IO25RSB0V0 |
| A14 | GBA0/IO29RSB0V0 |
| A15 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| A16 | GND |
| B1 | $\mathrm{V}_{\text {COMPLA }}$ |
| B2 | $\mathrm{V}_{\text {CCPLA }}$ |
| B3 | GAA0/IOOORSB0V0 |
| B4 | GAA1/IO01RSB0V0 |
| B5 | NC |
| B6 | IO06RSB0V0 |
| B7 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| B8 | IO12RSB0V0 |
| B9 | IO13RSB0V0 |
| B10 | $\mathrm{V}_{\text {CII }} \mathrm{BO}$ |
| B11 | IO19RSB0V0 |
| B12 | GBB0/IO27RSB0V0 |
| B13 | GBC 1/IO26RSB0V0 |
| B14 | GBA1/IO30RSB0V0 |
| B15 | NC |
| B16 | NC |
| C1 | $\mathrm{V}_{\text {CCI }}{ }^{\text {B3 }}$ |
| C2 | GND |
| C3 | VMV3 |
| C4 | NC |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS090 Function |
| C5 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$ |
| C6 | GAC 1/IO05RSB0V0 |
| C7 | IO09RSB0V0 |
| C8 | IO14RSB0V0 |
| C9 | IO15RSB0V0 |
| C10 | NC |
| C11 | IO20RSB0V0 |
| C12 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$ |
| C13 | GBB1/IO28RSB0V0 |
| C14 | VMV1 |
| C15 | GND |
| C16 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$ |
| D1 | GFA2/IO51NDB3V0 |
| D2 | GAC2/IO51PDB3V0 |
| D3 | GAB2/IO52NDB3V0 |
| D4 | GAA2/IO52PDB3V0 |
| D5 | NC |
| D6 | GAC0/IO04RSB0V0 |
| D7 | IO08RSB0V0 |
| D8 | NC |
| D9 | NC |
| D10 | IO21RSB0V0 |
| D11 | IO23RSB0V0 |
| D12 | NC |
| D13 | GBA2/IO31PDB1V0 |
| D14 | GBB2/IO31NDB1V0 |
| D15 | GBC2/IO32PDB1V0 |
| D16 | GCA2/IO32NDB1V0 |
| E1 | GND |
| E2 | GFC2/IO50NDB3V0 |
| E3 | GFB2/IO50PDB3V0 |
| E4 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 3$ |
| E5 | NC |
| E6 | NC |
| E7 | GND |
| E8 | NC |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS090 Function |
| E9 | IO22RSB0V0 |
| E10 | GND |
| E11 | IO24RSB0V0 |
| E12 | NC |
| E13 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$ |
| E14 | GCC2/IO33NDB1V0 |
| E15 | GCB2/IO33PDB1V0 |
| E16 | GND |
| F1 | GFB0/IO48NDB3V0 |
| F2 | GFB1/IO48PDB3V0 |
| F3 | GFC0/IO49NDB3V0 |
| F4 | NC |
| F5 | GFC 1/IO49PDB3V0 |
| F6 | NC |
| F7 | NC |
| F8 | NC |
| F9 | NC |
| F10 | NC |
| F11 | NC |
| F12 | NC |
| F13 | NC |
| F14 | NC |
| F15 | GCC1/IO34PDB1V0 |
| F16 | GCC0/IO34NDB1V0 |
| G1 | GEC0/IO46NPB3V0 |
| G2 | $\mathrm{V}_{\mathrm{CcI}} \mathrm{B} 3$ |
| G3 | GEC 1/IO46PPB3V0 |
| G4 | GFA1/IO47PDB3V0 |
| G5 | GND |
| G6 | GFA0/IO47NDB3V0 |
| G7 | GND |
| G8 | $\mathrm{V}_{\text {CC }}$ |
| G9 | GND |
| G10 | $\mathrm{V}_{\mathrm{CC}}$ |
| G11 | GDA1/IO37NDB1V0 |
| G12 | GND |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS090 Function |
| G13 | IO37PDB1V0 |
| G14 | GCB0/IO35NPB1V0 |
| G15 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$ |
| G16 | GCB1/IO35PPB1V0 |
| H1 | GEB1/IO45PDB3V0 |
| H2 | GEB0/IO45NDB3V0 |
| H3 | XTAL2 |
| H4 | XTAL1 |
| H5 | GNDOSC |
| H6 | $\mathrm{V}_{\mathrm{Ccosc}}$ |
| H7 | $\mathrm{V}_{\mathrm{CC}}$ |
| H8 | GND |
| H9 | $\mathrm{V}_{\text {CC }}$ |
| H10 | GND |
| H11 | GDC0/IO38NDB1V0 |
| H12 | GDC 1/IO38PDB1V0 |
| H13 | GDB1/IO39PDB1V0 |
| H14 | GDB0/IO39NDB1V0 |
| H15 | GCA0/IO36NDB1V0 |
| H16 | GCA1/IO36PDB1V0 |
| J1 | GEA0/IO44NDB3V0 |
| J2 | GEA1/IO44PDB3V0 |
| J3 | IO43NDB3V0 |
| J4 | GEC2/IO43PDB3V0 |
| J5 | NC |
| J6 | NC |
| J7 | GND |
| J8 | $V_{\text {CC }}$ |
| J9 | GND |
| J10 | $\mathrm{V}_{\mathrm{CC}}$ |
| $J 11$ | GDC2/IO41NPB1V0 |
| $J 12$ | NC |
| $J 13$ | NC |
| J14 | GDA0/IO40PDB1V0 |
| $J 15$ | NC |
| J16 | GDA2/IO40NDB1V0 |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS090 Function |
| K1 | NC |
| K2 | $\mathrm{V}_{\text {CCI }} \mathrm{B} 3$ |
| K3 | NC |
| K4 | NC |
| K5 | GND |
| K6 | NC |
| K7 | $\mathrm{V}_{\mathrm{CC}}$ |
| K8 | GND |
| K9 | $\mathrm{V}_{\mathrm{CC}}$ |
| K10 | GND |
| K11 | NC |
| K12 | GND |
| K13 | NC |
| K14 | NC |
| K15 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$ |
| K16 | NC |
| L1 | NC |
| L2 | NC |
| L3 | NC |
| L4 | NC |
| L5 | NC |
| L6 | NC |
| L7 | GNDA |
| L8 | ACO |
| L9 | NC |
| L10 | NC |
| L11 | PTEM |
| L12 | TDO |
| L13 | $\mathrm{V}_{\text {JTAG }}$ |
| L14 | NC |
| L15 | GDB2/IO41PPB1V0 |
| L16 | NC |
| M1 | GND |
| M2 | NC |
| M3 | NC |
| M4 | $\mathrm{V}_{\text {CCI }}{ }^{3}$ |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS090 Function |
| M5 | NC |
| M6 | NC |
| M7 | NC |
| M8 | AG1 |
| M9 | NC |
| M10 | AC2 |
| M11 | AG3 |
| M12 | $V_{\text {PUMP }}$ |
| M13 | $\mathrm{V}_{\text {CCI }} 1$ |
| M14 | TMS |
| M15 | TRST |
| M16 | GND |
| N1 | GEB2/IO42PDB3V0 |
| N2 | GEA2/IO42NDB3V0 |
| N3 | NC |
| N4 | $V_{\text {CC33PMP }}$ |
| N5 | $\mathrm{V}_{\text {CC15A }}$ |
| N6 | NC |
| N7 | AC1 |
| N8 | NC |
| N9 | NC |
| N10 | AG2 |
| N11 | AC4 |
| N12 | GNDA |
| N13 | VCC33A |
| N14 | $\mathrm{V}_{\text {CCNVM }}$ |
| N15 | TCK |
| N16 | TDI |
| P1 | $\mathrm{V}_{\text {CCNVM }}$ |
| P2 | GNDNVM |
| P3 | GNDA |
| P4 | NC |
| P5 | NC |
| P6 | NC |
| P7 | AGO |
| P8 | NC |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS090 Function |
| P9 | GNDA |
| P10 | AC3 |
| P11 | AV4 |
| P12 | AG4 |
| P13 | NC |
| P14 | ADCGNDREF |
| P15 | PTBASE |
| P16 | GNDNVM |
| R1 | $\mathrm{V}_{\text {CCI }}{ }^{\text {B3 }}$ |
| R2 | PCAP |
| R3 | NC |
| R4 | NC |
| R5 | AV0 |
| R6 | ATO |
| R7 | AV1 |
| R8 | NC |
| R9 | AV2 |
| R10 | AT3 |
| R11 | AV3 |
| R12 | NC |
| R13 | NC |
| R14 | NC |
| R15 | PUB |
| R16 | $\mathrm{V}_{\text {CCI }} 1$ |
| T1 | GND |
| T2 | NCAP |
| T3 | $\mathrm{V}_{\text {CC33N }}$ |
| T4 | NC |
| T5 | AT1 |
| T6 | ATRTNO |
| T7 | NC |
| T8 | NC |
| T9 | AT2 |
| T10 | ATRTN1 |
| T11 | AT4 |
| T12 | ATRTN2 |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS090 Function |
| T13 | GNDA |
| T14 | V $_{\text {CC33ACAP }}$ |
| T15 | VAREF |
| T16 | GND |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| A1 | GND |
| A2 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| A3 | GAA0/IOOORSB0V0 |
| A4 | GAA1/IO01RSB0V0 |
| A5 | GND |
| A6 | IO11RSB0V0 |
| A7 | IO14RSB0V0 |
| A8 | IO15RSB0V0 |
| A9 | IO24RSB0V0 |
| A10 | IO25RSBOVO |
| A11 | IO26RSB0V0 |
| A12 | GND |
| A13 | GBA0/IO38RSB0V0 |
| A14 | IO32RSB0V0 |
| A15 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| A16 | GND |
| B1 | $\mathrm{V}_{\text {COMPLA }}$ |
| B2 | $\mathrm{V}_{\text {CCPLA }}$ |
| B3 | IO07RSB0V0 |
| B4 | IO06RSBOVO |
| B5 | GAB1/IO03RSB0V0 |
| B6 | IO10RSB0V0 |
| B7 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| B8 | IO16RSB0V0 |
| B9 | IO17RSB0V0 |
| B10 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| B11 | IO27RSB0V0 |
| B12 | GBC0/IO34RSB0V0 |
| B13 | GBA1/IO39RSB0V0 |
| B14 | IO33RSB0V0 |
| B15 | NC |
| B16 | NC |
| C1 | $\mathrm{V}_{\text {CCI }}{ }^{3}$ |
| C2 | GND |
| C3 | VMV3 |
| C4 | NC |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| C5 | $\mathrm{V}_{\text {CII }} \mathrm{BO}$ |
| C6 | GAC1/IO05RSB0V0 |
| C7 | IO12RSB0V0 |
| C8 | IO22RSB0V0 |
| C9 | IO23RSB0V0 |
| C10 | IO30RSB0V0 |
| C11 | IO31RSB0V0 |
| C12 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| C13 | GBC1/IO35RSB0V0 |
| C14 | VMV1 |
| C15 | GND |
| C16 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$ |
| D1 | IO75NDB3V0 |
| D2 | GAB2/IO75PDB3V0 |
| D3 | IO76NDB3V0 |
| D4 | GAA2/IO76PDB3V0 |
| D5 | GAB0/IO02RSB0V0 |
| D6 | GAC0/IO04RSB0V0 |
| D7 | IO13RSB0V0 |
| D8 | IO20RSB0V0 |
| D9 | IO21RSB0V0 |
| D10 | IO28RSB0V0 |
| D11 | GBB0/IO36RSB0V0 |
| D12 | NC |
| D13 | GBA2/IO40PDB1V0 |
| D14 | IO40NDB1V0 |
| D15 | GBB2/IO41PDB1V0 |
| D16 | IO41NDB1V0 |
| E1 | GND |
| E2 | IO73NDB3V0 |
| E3 | IO73PDB3V0 |
| E4 | $\mathrm{V}_{\text {CCI }} \mathrm{B}$ |
| E5 | IO74NPB3V0 |
| E6 | IO08RSB0V0 |
| E7 | GND |
| E8 | IO18RSB0V0 |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| E9 | NC |
| E10 | GND |
| E11 | GBB1/IO37RSB0V0 |
| E12 | IO50PPB1V0 |
| E13 | $\mathrm{V}_{\text {CCI }} 1$ |
| E14 | IO42NDB1V0 |
| E15 | GBC2/IO42PDB1V0 |
| E16 | GND |
| F1 | NC |
| F2 | NC |
| F3 | IO72NDB3V0 |
| F4 | IO72PDB3V0 |
| F5 | NC |
| F6 | GAC2/IO74PPB3V0 |
| F7 | IO09RSB0V0 |
| F8 | IO19RSB0V0 |
| F9 | NC |
| F10 | IO29RSBOVO |
| F11 | IO43NDB1V0 |
| F12 | IO43PDB1V0 |
| F13 | IO44NDB1V0 |
| F14 | GCA2/IO44PDB1V0 |
| F15 | GCB2/IO45PDB1V0 |
| F16 | IO45NDB1V0 |
| G1 | IO70NPB3V0 |
| G2 | $\mathrm{V}_{\text {CLI }} \mathrm{B}$ |
| G3 | GFB2/IO70PPB3V0 |
| G4 | GFA2/IO71PDB3V0 |
| G5 | GND |
| G6 | IO71NDB3V0 |
| G7 | GND |
| G8 | $\mathrm{V}_{\text {CC }}$ |
| G9 | GND |
| G10 | $\mathrm{V}_{\mathrm{CC}}$ |
| G11 | GCC0/IO47NDB1V0 |
| G12 | GND |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| G13 | GCC1/IO47PDB1V0 |
| G14 | IO46NPB1V0 |
| G15 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{Bl}^{1}$ |
| G16 | GCC2/IO46PPB1V0 |
| H1 | GFC2/IO69PDB3V0 |
| H2 | IO69NDB3V0 |
| H3 | XTAL2 |
| H4 | XTAL1 |
| H5 | GNDOSC |
| H6 | $\mathrm{V}_{\text {ccosc }}$ |
| H7 | $\mathrm{V}_{\text {CC }}$ |
| H8 | GND |
| H9 | $\mathrm{V}_{\mathrm{CC}}$ |
| H10 | GND |
| H11 | IO51NDB1V0 |
| H12 | IO51PDB1V0 |
| H13 | GCA1/IO49PDB1V0 |
| H14 | GCA0/IO49NDB1V0 |
| H15 | GCB0/IO48NDB1V0 |
| H16 | GCB1/IO48PDB1V0 |
| J1 | GFA0/IO66NDB3V0 |
| J2 | GFA1/IO66PDB3V0 |
| J3 | GFB0/IO67NDB3V0 |
| J4 | GFB1/IO67PDB3V0 |
| J5 | GFC0/IO68NDB3V0 |
| J6 | GFC 1/IO68PDB3V0 |
| J7 | GND |
| J8 | $\mathrm{V}_{\text {CC }}$ |
| J9 | GND |
| J10 | $\mathrm{V}_{\text {CC }}$ |
| J11 | IO56NPB1V0 |
| J12 | GDB0/IO53NPB1V0 |
| $J 13$ | GDA1/IO54PDB1V0 |
| J14 | GDC1/IO52PPB1V0 |
| $J 15$ | IO50NPB1V0 |
| J16 | GDC0/IO52NPB1V0 |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| K1 | IO65NPB3V0 |
| K2 | $\mathrm{V}_{\text {CLI }} \mathrm{B3}$ |
| K3 | IO65PPB3V0 |
| K4 | IO64PDB3V0 |
| K5 | GND |
| K6 | IO64NDB3V0 |
| K7 | $\mathrm{V}_{\mathrm{CC}}$ |
| K8 | GND |
| K9 | $\mathrm{V}_{\mathrm{CC}}$ |
| K10 | GND |
| K11 | GDC2/IO57PPB1V0 |
| K12 | GND |
| K13 | GDA0/IO54NDB1V0 |
| K14 | GDA2/IO55PPB1V0 |
| K15 | $\mathrm{V}_{\mathrm{CcI}} \mathrm{B1}$ |
| K16 | GDB1/IO53PPB1V0 |
| L1 | GEC 1/IO63PDB3V0 |
| L2 | GEC0/IO63NDB3V0 |
| L3 | GEB1/IO62PDB3V0 |
| L4 | GEB0/IO62NDB3V0 |
| L5 | IO60NDB3V0 |
| L6 | GEC2/IO60PDB3V0 |
| L7 | GNDA |
| L8 | ACO |
| L9 | AV2 |
| L10 | AC3 |
| L11 | PTEM |
| L12 | TDO |
| L13 | $\mathrm{V}_{\text {JTAG }}$ |
| L14 | IO57NPB1V0 |
| L15 | GDB2/IO56PPB1V0 |
| L16 | IO55NPB1V0 |
| M1 | GND |
| M2 | GEA1/IO61PDB3V0 |
| M3 | GEA0/IO61NDB3V0 |
| M4 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 3$ |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| M5 | IO58NPB3V0 |
| M6 | NC |
| M7 | NC |
| M8 | AG1 |
| M9 | AC2 |
| M10 | AC4 |
| M11 | AG5 |
| M12 | $V_{\text {PUMP }}$ |
| M13 | $\mathrm{V}_{\text {CCI }} \mathrm{B1}$ |
| M14 | TMS |
| M15 | TRST |
| M16 | GND |
| N1 | GEB2/IO59PDB3V0 |
| N2 | IO59NDB3V0 |
| N3 | GEA2/IO58PPB3V0 |
| N4 | $\mathrm{V}_{\text {CC33PMP }}$ |
| N5 | $\mathrm{V}_{\text {CC15A }}$ |
| N6 | NC |
| N7 | AC1 |
| N8 | AG3 |
| N9 | AV3 |
| N10 | AG4 |
| N11 | NC |
| N12 | GNDA |
| N13 | $V_{\text {CC33A }}$ |
| N14 | $\mathrm{V}_{\text {CCNVM }}$ |
| N15 | TCK |
| N16 | TDI |
| P1 | $\mathrm{V}_{\text {CCNVM }}$ |
| P2 | GNDNVM |
| P3 | GNDA |
| P4 | NC |
| P5 | NC |
| P6 | NC |
| P7 | AGO |
| P8 | AG2 |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| P9 | GNDA |
| P10 | AC5 |
| P11 | NC |
| P12 | NC |
| P13 | NC |
| P14 | ADCGNDREF |
| P15 | PTBASE |
| P16 | GNDNVM |
| R1 | $\mathrm{V}_{\text {Cli }} \mathrm{B} 3$ |
| R2 | PCAP |
| R3 | NC |
| R4 | NC |
| R5 | AVO |
| R6 | ATO |
| R7 | AV1 |
| R8 | AT3 |
| R9 | AV4 |
| R10 | AT5 |
| R11 | AV5 |
| R12 | NC |
| R13 | NC |
| R14 | NC |
| R15 | PUB |
| R16 | $\mathrm{V}_{\text {CCI }} 1$ |
| T1 | GND |
| T2 | NCAP |
| T3 | $\mathrm{V}_{\text {CC33N }}$ |
| T4 | NC |
| T5 | AT1 |
| T6 | ATRTNO |
| T7 | AT2 |
| T8 | ATRTN1 |
| T9 | AT4 |
| T10 | ATRTN2 |
| T11 | NC |
| T12 | NC |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS250 Function |
| T13 | GNDA |
| T14 | V $_{\text {CC33ACAP }}$ |
| T15 | VAREF |
| T16 | GND |

Fusion Family of Mixed-Signal Flash FPGAs

| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| A1 | GND |
| A2 | $\mathrm{V}_{\text {CCI }} \mathrm{BO}$ |
| A3 | GAA0/IO01NDB0V0 |
| A4 | GAA1/IO01PDB0V0 |
| A5 | GND |
| A6 | IO10PDB0V1 |
| A7 | IO12PDB0V1 |
| A8 | IO12NDB0V1 |
| A9 | IO22NDB1V0 |
| A10 | IO22PDB1V0 |
| A11 | IO24NDB1V1 |
| A12 | GND |
| A13 | GBA0/IO28NDB1V1 |
| A14 | IO29NDB1V1 |
| A15 | $\mathrm{V}_{\text {Cli }} \mathrm{B} 1$ |
| A16 | GND |
| B1 | $V_{\text {COMPLA }}$ |
| B2 | $V_{\text {CCPLA }}$ |
| B3 | IOOONDBOVO |
| B4 | IOOOPDBOVO |
| B5 | GAB1/IO02PPB0V0 |
| B6 | IO10NDB0V1 |
| B7 | $\mathrm{V}_{\text {CII }} \mathrm{BO}$ |
| B8 | IO18NDB1V0 |
| B9 | IO18PDB1V0 |
| B10 | $\mathrm{V}_{\mathrm{CcI}} \mathrm{B1}$ |
| B11 | IO24PDB1V1 |
| B12 | GBC0/IO26NPB1V1 |
| B13 | GBA1/IO28PDB1V1 |
| B14 | IO29PDB1V1 |
| B15 | $\mathrm{V}_{\text {CCPLB }}$ |
| B16 | $\mathrm{V}_{\text {COMPLB }}$ |
| C1 | $\mathrm{V}_{\text {CCI }}{ }^{\text {B4 }}$ |
| C2 | GND |
| C3 | VMV4 |
| C4 | VMV0 |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| C5 | $\mathrm{V}_{\text {CII }} \mathrm{BO}$ |
| C6 | GAC1/IO03PDB0V0 |
| C7 | IO06NDB0V0 |
| C8 | IO16PDB1V0 |
| C9 | IO16NDB1V0 |
| C10 | IO25NDB1V1 |
| C11 | IO25PDB1V1 |
| C12 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$ |
| C13 | GBC1/IO26PPB1V1 |
| C14 | VMV2 |
| C15 | GND |
| C16 | $\mathrm{V}_{\text {CII }} \mathrm{B}$ |
| D1 | IO84NDB4V0 |
| D2 | GAB2/IO84PDB4V0 |
| D3 | IO85NDB4V0 |
| D4 | GAA2/IO85PDB4V0 |
| D5 | GAB0/IO02NPB0V0 |
| D6 | GAC0/IO03NDB0V0 |
| D7 | IO06PDB0V0 |
| D8 | IO14NDB0V1 |
| D9 | IO14PDB0V1 |
| D10 | IO23PDB1V1 |
| D11 | GBB0/IO27NDB1V1 |
| D12 | VMV1 |
| D13 | GBA2/IO30PDB2V0 |
| D14 | IO30NDB2V0 |
| D15 | GBB2/IO31PDB2V0 |
| D16 | IO31NDB2V0 |
| E1 | GND |
| E2 | IO81NDB4V0 |
| E3 | IO81PDB4V0 |
| E4 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B}$ |
| E5 | IO83NPB4V0 |
| E6 | IO04NPB0V0 |
| E7 | GND |
| E8 | IO08PDB0V1 |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| E9 | IO20NDB1V0 |
| E10 | GND |
| E11 | GBB1/IO27PDB1V1 |
| E12 | IO33PSB2V0 |
| E13 | $\mathrm{V}_{\text {Cl }} \mathrm{B}^{2}$ |
| E14 | IO32NDB2V0 |
| E15 | GBC2/IO32PDB2V0 |
| E16 | GND |
| F1 | IO79NDB4V0 |
| F2 | IO79PDB4V0 |
| F3 | IO76NDB4V0 |
| F4 | IO76PDB4V0 |
| F5 | IO82PSB4V0 |
| F6 | GAC2/IO83PPB4V0 |
| F7 | IO04PPB0V0 |
| F8 | IO08NDB0V1 |
| F9 | IO20PDB1V0 |
| F10 | IO23NDB1V1 |
| F11 | IO36NDB2V0 |
| F12 | IO36PDB2V0 |
| F13 | IO39NDB2V0 |
| F14 | GCA2/IO39PDB2V0 |
| F15 | GCB2/IO40PDB2V0 |
| F16 | IO40NDB2V0 |
| G1 | IO74NPB4V0 |
| G2 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B4}$ |
| G3 | GFB2/IO74PPB4V0 |
| G4 | GFA2/IO75PDB4V0 |
| G5 | GND |
| G6 | IO75NDB4V0 |
| G7 | GND |
| G8 | $\mathrm{V}_{\mathrm{CC}}$ |
| G9 | GND |
| G10 | $\mathrm{V}_{\mathrm{CC}}$ |
| G11 | GCC0/IO43NDB2V0 |
| G12 | GND |

Fusion Family of Mixed-Signal Flash FPGAs

| 256-Pin FBGA |  | 256-Pin FBGA |  | 256-Pin FBGA |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pin Number | AFS600 Function | Pin Number | AFS600 Function | Pin Number | AFS600 Function |
| G13 | GCC 1/IO43PDB2V0 | K1 | IO67NPB4V0 | M5 | IO58NPB4V0 |
| G14 | IO41NPB2V0 | K2 | $\mathrm{V}_{\text {CI }} \mathrm{B4}$ | M6 | AV0 |
| G15 | $\mathrm{V}_{\text {CI }} \mathrm{B} 2$ | K3 | IO67PPB4V0 | M7 | AC1 |
| G16 | GCC2/IO41PPB2V0 | K4 | IO65PDB4V0 | M8 | AG3 |
| H1 | GFC2/IO73PDB4V0 | K5 | GND | M9 | AC4 |
| H2 | IO73NDB4V0 | K6 | IO65NDB4V0 | M10 | AC6 |
| H3 | XTAL2 | K7 | $\mathrm{V}_{\mathrm{CC}}$ | M11 | AG7 |
| H4 | XTAL1 | K8 | GND | M12 | $V_{\text {PUMP }}$ |
| H5 | GNDOSC | K9 | $\mathrm{V}_{\text {cc }}$ | M13 | $\mathrm{V}_{\text {CIIB2 }}$ |
| H6 | $V_{\text {ccosc }}$ | K10 | GND | M14 | TMS |
| H7 | $\mathrm{V}_{\text {cc }}$ | K11 | GDC2/IO57PPB2V0 | M15 | TRST |
| H8 | GND | K12 | GND | M16 | GND |
| H9 | $\mathrm{V}_{\text {cC }}$ | K13 | GDA0/IO54NDB2V0 | N1 | GEB2/IO59PDB4V0 |
| H10 | GND | K14 | GDA2/IO55PPB2V0 | N2 | IO59NDB4V0 |
| H11 | IO47NDB2V0 | K15 | $\mathrm{V}_{\mathrm{Cl}} \mathrm{B}^{2}$ | N3 | GEA2/IO58PPB4V0 |
| H12 | IO47PDB2V0 | K16 | GDB1/IO53PPB2V0 | N4 | $V_{\text {CC33PMP }}$ |
| H13 | GCA1/IO45PDB2V0 | L1 | GEC 1/IO63PDB4V0 | N5 | $\mathrm{V}_{\text {CC15 }}$ |
| H14 | GCA0/IO45NDB2V0 | L2 | GEC0/IO63NDB4V0 | N6 | AGO |
| H15 | GCBO/IO44NDB2V0 | L3 | GEB1/IO62PDB4V0 | N7 | AC3 |
| H16 | GCB1/IO44PDB2V0 | L4 | GEB0/IO62NDB4V0 | N8 | AG5 |
| J1 | GFA0/IO70NDB4V0 | L5 | IO60NDB4V0 | N9 | AV5 |
| J2 | GFA1/IO70PDB4V0 | L6 | GEC2/IO60PDB4V0 | N10 | AG6 |
| J3 | GFB0/IO71NDB4V0 | L7 | GNDA | N11 | AC8 |
| J4 | GFB1/IO71PDB4V0 | L8 | AC2 | N12 | GNDA |
| J5 | GFC0/IO72NDB4V0 | L9 | AV4 | N13 | $\mathrm{V}_{\text {CC33A }}$ |
| J6 | GFC 1/IO72PDB4V0 | L10 | AC5 | N14 | $\mathrm{V}_{\text {CCNVM }}$ |
| J7 | GND | L11 | PTEM | N15 | TCK |
| 18 | $\mathrm{V}_{\text {cc }}$ | L12 | TDO | N16 | TDI |
| J9 | GND | L13 | $\mathrm{V}_{\text {JTAG }}$ | P1 | $\mathrm{V}_{\text {CCNVM }}$ |
| J10 | $\mathrm{V}_{\text {cc }}$ | L14 | IO57NPB2V0 | P2 | GNDNVM |
| J11 | IO56NPB2V0 | L15 | GDB2/IO56PPB2V0 | P3 | GNDA |
| J12 | GDB0//O53NPB2V0 | L16 | 1055 NPB 2 V 0 | P4 | ACO |
| J13 | GDA1/IO54PDB2V0 | M1 | GND | P5 | AG1 |
| J14 | GDC1/IO52PPB2V0 | M2 | GEA1/IO61PDB4V0 | P6 | AV1 |
| J15 | IO51NSB2V0 | M3 | GEA0/IO61NDB4V0 | P7 | AG2 |
| J16 | GDC0/IO52NPB2V0 | M4 | $\mathrm{V}_{\text {CI }}{ }^{\text {B4 }}$ | P8 | AG4 |

## Fusion Family of Mixed-Signal Flash FPGAs

| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| P9 | GNDA |
| P10 | AC7 |
| P11 | AV8 |
| P12 | AG8 |
| P13 | AV9 |
| P14 | ADCGNDREF |
| P15 | PTBASE |
| P16 | GNDNVM |
| R1 | $\mathrm{V}_{\text {CCI }}{ }^{\text {B4 }}$ |
| R2 | PCAP |
| R3 | AT1 |
| R4 | ATO |
| R5 | AV2 |
| R6 | AT2 |
| R7 | AV3 |
| R8 | AT5 |
| R9 | AV6 |
| R10 | AT7 |
| R11 | AV7 |
| R12 | AT9 |
| R13 | AG9 |
| R14 | AC9 |
| R15 | PUB |
| R16 | $\mathrm{V}_{\text {CII }} \mathrm{B} 2$ |
| T1 | GND |
| T2 | NCAP |
| T3 | $\mathrm{V}_{\text {CC33N }}$ |
| T4 | ATRTNO |
| T5 | AT3 |
| T6 | ATRTN1 |
| T7 | AT4 |
| T8 | ATRTN2 |
| T9 | AT6 |
| T10 | ATRTN3 |
| T11 | AT8 |
| T12 | ATRTN4 |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| T13 | GNDA |
| T14 | V $_{\text {CC33ACAP }}$ |
| T15 | VAREF |
| T16 | GND |

Fusion Family of Mixed-Signal Flash FPGAs

| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS1500 Function |
| A1 | GND |
| A2 | $\mathrm{V}_{\text {Cl }} \mathrm{BO}$ |
| A3 | GAA0/IOO1NDBOV0 |
| A4 | GAA1/IO01PDBOV0 |
| A5 | GND |
| A6 | IOO7PDBOV1 |
| A7 | IO13PDBOV2 |
| A8 | IO13NDB0V2 |
| A9 | IO24NDB1V0 |
| A10 | IO24PDB1V0 |
| A11 | IO29NDB1V1 |
| A12 | GND |
| A13 | GBA0/IO42NDB1V2 |
| A14 | IO43NDB1V2 |
| A15 | $V_{\text {CCI }} 1$ |
| A16 | GND |
| B1 | $\mathrm{V}_{\text {COMPLA }}$ |
| B2 | $\mathrm{V}_{\text {cCPLA }}$ |
| B3 | IOOONDBOVO |
| B4 | IOOOPDBOVO |
| B5 | GAB1/IOO2PPBOV0 |
| B6 | IOO7NDB0V1 |
| B7 | $\mathrm{V}_{\text {CI }} \mathrm{BO}$ |
| B8 | IO22NDB1V0 |
| B9 | IO22PDB1V0 |
| B10 | $V_{\text {CCIB }}$ |
| B11 | IO29PDB1V1 |
| B12 | GBC0/IO40NPB1V2 |
| B13 | GBA1/IO42PDB1V2 |
| B14 | IO43PDB1V2 |
| B15 | $V_{\text {CCPLB }}$ |
| B16 | $V_{\text {Complb }}$ |
| C1 | $V_{\text {CCI }}{ }^{\text {b }}$ |
| C2 | GND |
| C3 | VMV4 |
| C4 | VMV0 |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS1500 Function |
| C5 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$ |
| C6 | GAC 1/IO03PDB0V0 |
| C7 | IO09NDB0V1 |
| C8 | IO23PDB1V0 |
| C9 | IO23NDB1V0 |
| C10 | IO31NDB1V1 |
| C11 | IO31PDB1V1 |
| C12 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$ |
| C13 | GBC 1/IO40PPB1V2 |
| C14 | VMV2 |
| C15 | GND |
| C16 | $\mathrm{V}_{\text {CCI }} \mathrm{B} 2$ |
| D1 | IO124NDB4V0 |
| D2 | GAB2/IO124PDB4V0 |
| D3 | IO125NDB4V0 |
| D4 | GAA2/IO125PDB4V0 |
| D5 | GAB0/IO02NPB0V0 |
| D6 | GAC0/IO03NDB0V0 |
| D7 | IO09PDB0V1 |
| D8 | IO15NDB0V2 |
| D9 | IO15PDB0V2 |
| D10 | IO37PDB1V2 |
| D11 | GBB0/IO41NDB1V2 |
| D12 | VMV1 |
| D13 | GBA2/IO44PDB2V0 |
| D14 | IO44NDB2V0 |
| D15 | GBB2/IO45PDB2V0 |
| D16 | IO45NDB2V0 |
| E1 | GND |
| E2 | IO118NDB4V0 |
| E3 | IO118PDB4V0 |
| E4 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B4}$ |
| E5 | IO123NPB4V0 |
| E6 | IO05NPB0V1 |
| E7 | GND |
| E8 | IO11PDB0V1 |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS1500 Function |
| E9 | IO27NDB1V1 |
| E10 | GND |
| E11 | GBB1/IO41PDB1V2 |
| E12 | IO48PSB2V0 |
| E13 | $\mathrm{V}_{\mathrm{Cl}} \mathrm{B} 2$ |
| E14 | IO46NDB2V0 |
| E15 | GBC2/IO46PDB2V0 |
| E16 | GND |
| F1 | IO111NDB4V0 |
| F2 | IO111PDB4V0 |
| F3 | IO112NDB4V0 |
| F4 | IO112PDB4V0 |
| F5 | IO120PSB4V0 |
| F6 | GAC2/IO123PPB4V0 |
| F7 | IO05PPB0V1 |
| F8 | IO11NDB0V1 |
| F9 | IO27PDB1V1 |
| F10 | IO37NDB1V2 |
| F11 | IO50NDB2V0 |
| F12 | IO50PDB2V0 |
| F13 | IO59NDB2V0 |
| F14 | GCA2/IO59PDB2V0 |
| F15 | GCB2/IO60PDB2V0 |
| F16 | IO60NDB2V0 |
| G1 | IO109NPB4V0 |
| G2 | $\mathrm{V}_{\mathrm{Cl}} \mathrm{B} 4$ |
| G3 | GFB2/IO109PPB4V0 |
| G4 | GFA2/IO110PDB4V0 |
| G5 | GND |
| G6 | IO110NDB4V0 |
| G7 | GND |
| G8 | $\mathrm{V}_{\mathrm{CC}}$ |
| G9 | GND |
| G10 | $\mathrm{V}_{\mathrm{CC}}$ |
| G11 | GCC0/IO62NDB2V0 |
| G12 | GND |

Fusion Family of Mixed-Signal Flash FPGAs

| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS1500 Function |
| G13 | GCC1/IO62PDB2V0 |
| G14 | 1061 NPB2V0 |
| G15 | $\mathrm{V}_{\text {CI }} \mathrm{B}^{2}$ |
| G16 | GCC2/IO61PPB2V0 |
| H1 | GFC2/IO108PDB4V0 |
| H2 | IO108NDB4V0 |
| H3 | XTAL2 |
| H4 | XTAL1 |
| H5 | GNDOSC |
| H6 | $\mathrm{V}_{\text {ccosc }}$ |
| H7 | $\mathrm{V}_{\text {cc }}$ |
| H8 | GND |
| H9 | $\mathrm{V}_{\text {cc }}$ |
| H10 | GND |
| H11 | IO69NDB2V0 |
| H12 | IO69PDB2V0 |
| H13 | GCA1/IO64PDB2V0 |
| H14 | GCA0/IO64NDB2V0 |
| H15 | GCB0/IO63NDB2V0 |
| H16 | GCB1/IO63PDB2V0 |
| J1 | GFA0/IO105NDB4V0 |
| J2 | GFA1/IO105PDB4V0 |
| J3 | GFBo/IO106NDB4V0 |
| J4 | GFB1/IO106PDB4V0 |
| J5 | GFC0/IO107NDB4V0 |
| J6 | GFC 1/IO107PDB4V0 |
| J7 | GND |
| 18 | $\mathrm{V}_{\text {cc }}$ |
| J9 | GND |
| J10 | $\mathrm{V}_{\text {cc }}$ |
| 111 | $1083 \mathrm{NPB2V} 0$ |
| 112 | GDB0/IO80NPB2V0 |
| 113 | GDA1/IO81PDB2V0 |
| J14 | GDC1/IO79PPB2V0 |
| J15 | 1077 NSB2V0 |
| J16 | GDCO/IO79NPB2VO |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS1500 Function |
| K1 | IO92NPB4V0 |
| K2 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B}$ |
| K3 | IO92PPB4V0 |
| K4 | IO96PDB4V0 |
| K5 | GND |
| K6 | IO96NDB4V0 |
| K7 | $\mathrm{V}_{\text {CC }}$ |
| K8 | GND |
| K9 | $\mathrm{V}_{\mathrm{CC}}$ |
| K10 | GND |
| K11 | GDC2/IO84PPB2V0 |
| K12 | GND |
| K13 | GDA0/IO81NDB2V0 |
| K14 | GDA2/IO82PPB2V0 |
| K15 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$ |
| K16 | GDB1/IO80PPB2V0 |
| L1 | GEC 1/IO90PDB4V0 |
| L2 | GEC0/IO90NDB4V0 |
| L3 | GEB1/IO89PDB4V0 |
| L4 | GEB0/IO89NDB4V0 |
| L5 | IO87NDB4V0 |
| L6 | GEC2/IO87PDB4V0 |
| L7 | GNDA |
| L8 | AC2 |
| L9 | AV4 |
| L10 | AC5 |
| L11 | PTEM |
| L12 | TDO |
| L13 | VJTAG |
| L14 | IO84NPB2V0 |
| L15 | GDB2/IO83PPB2V0 |
| L16 | IO82NPB2V0 |
| M1 | GND |
| M2 | GEA1/IO88PDB4V0 |
| M3 | GEA0/IO88NDB4V0 |
| M4 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 4$ |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS1500 Function |
| M5 | IO85NPB4V0 |
| M6 | AV0 |
| M7 | AC1 |
| M8 | AG3 |
| M9 | AC4 |
| M10 | AC6 |
| M11 | AG7 |
| M12 | $V_{\text {PUMP }}$ |
| M13 | $\mathrm{V}_{\text {Clı }} \mathrm{B} 2$ |
| M14 | TMS |
| M15 | TRST |
| M16 | GND |
| N1 | GEB2/IO86PDB4V0 |
| N2 | IO86NDB4V0 |
| N3 | GEA2/IO85PPB4V0 |
| N4 | $V_{\text {CC33PMP }}$ |
| N5 | $V_{\text {CC15A }}$ |
| N6 | AG0 |
| N7 | AC3 |
| N8 | AG5 |
| N9 | AV5 |
| N10 | AG6 |
| N11 | AC8 |
| N12 | GNDA |
| N13 | $V_{\text {CC33A }}$ |
| N14 | $\mathrm{V}_{\text {CCNVM }}$ |
| N14 | $V_{\text {CCNVM }}$ |
| N15 | TCK |
| N16 | TDI |
| P1 | $\mathrm{V}_{\text {CCNVM }}$ |
| P1 | $V_{\text {CCNVM }}$ |
| P2 | GNDNVM |
| P2 | GNDNVM |
| P3 | GNDA |
| P4 | AC0 |
| P5 | AG1 |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS1500 Function |
| P6 | AV1 |
| P7 | AG2 |
| P8 | AG4 |
| P9 | GNDA |
| P10 | AC7 |
| P11 | AV8 |
| P12 | AG8 |
| P13 | AV9 |
| P14 | ADCGNDREF |
| P15 | PTBASE |
| P16 | GNDNVM |
| P16 | GNDNVM |
| R1 | $\mathrm{V}_{\text {CCI }} \mathrm{B}^{\text {d }}$ |
| R2 | PCAP |
| R3 | AT1 |
| R4 | ATO |
| R5 | AV2 |
| R6 | AT2 |
| R7 | AV3 |
| R8 | AT5 |
| R9 | AV6 |
| R10 | AT7 |
| R11 | AV7 |
| R12 | AT9 |
| R13 | AG9 |
| R14 | AC9 |
| R15 | PUB |
| R16 | $\mathrm{V}_{\text {CCI }} \mathrm{B2}$ |
| T1 | GND |
| T2 | NCAP |
| T3 | $\mathrm{V}_{\text {CC33N }}$ |
| T4 | ATRTN0 |
| T5 | AT3 |
| T6 | ATRTN1 |
| T7 | AT4 |
| T8 | ATRTN2 |


| 256-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS1500 Function |
| T9 | AT6 |
| T10 | ATRTN3 |
| T11 | AT8 |
| T12 | ATRTN4 |
| T13 | GNDA |
| T14 | V CC33ACAP |
| T15 | VAREF |
| T16 | GND |

## 484-Pin FBGA



Figure 4-5 • 484-Pin FBGA (Bottom View)

## Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

| 484-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| A1 | GND |
| A2 | $\mathrm{V}_{\text {CC }}$ |
| A3 | GAA1/IO01PDB0V0 |
| A4 | GAB0/IO02NDB0V0 |
| A5 | GAB1/IO02PDB0V0 |
| A6 | IO07NDB0V1 |
| A7 | IO07PDB0V1 |
| A8 | IO10PDB0V1 |
| A9 | IO14NDB0V1 |
| A10 | IO14PDB0V1 |
| A11 | IO17PDB1V0 |
| A12 | IO18PDB1V0 |
| A13 | IO19NDB1V0 |
| A14 | IO19PDB1V0 |
| A15 | IO24NDB1V1 |
| A16 | IO24PDB1V1 |
| A17 | GBC0/IO26NDB1V1 |
| A18 | GBA0/IO28NDB1V1 |
| A19 | IO29NDB1V1 |
| A20 | IO29PDB1V1 |
| A21 | $\mathrm{V}_{\mathrm{CC}}$ |
| A22 | GND |
| AA1 | $\mathrm{V}_{\mathrm{CC}}$ |
| AA2 | GND |
| AA3 | VMV4 |
| AA4 | $\mathrm{V}_{\text {CCI }}{ }^{\text {B4 }}$ |
| AA5 | PCAP |
| AA6 | AG0 |
| AA7 | GNDA |
| AA8 | AG1 |
| AA9 | AG2 |
| AA10 | GNDA |
| AA11 | AG3 |
| AA12 | AG6 |
| AA13 | GNDA |
| AA14 | AG7 |


| 484-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| AA15 | AG8 |
| AA16 | GNDA |
| AA17 | AG9 |
| AA18 | VAREF |
| AA19 | $\mathrm{V}_{\text {CII }} \mathrm{B} 2$ |
| AA20 | PTEM |
| AA21 | GND |
| AA22 | $\mathrm{V}_{\mathrm{CC}}$ |
| AB1 | GND |
| AB2 | $\mathrm{V}_{\mathrm{CC}}$ |
| AB3 | NC |
| AB4 | GND |
| AB5 | $\mathrm{V}_{\text {CC33N }}$ |
| AB6 | ATO |
| AB7 | ATRTN0 |
| AB8 | AT1 |
| AB9 | AT2 |
| AB10 | ATRTN1 |
| AB11 | AT3 |
| AB12 | AT6 |
| AB13 | ATRTN3 |
| AB14 | AT7 |
| AB15 | AT8 |
| AB16 | ATRTN4 |
| AB17 | AT9 |
| AB18 | $\mathrm{V}_{\text {CC33ACAP }}$ |
| AB19 | GND |
| AB20 | NC |
| AB21 | $\mathrm{V}_{\mathrm{CC}}$ |
| AB22 | GND |
| B1 | $\mathrm{V}_{\text {CC }}$ |
| B2 | GND |
| B3 | GAA0/IO01NDB0V0 |
| B4 | GND |
| B5 | IO05NDB0V0 |
| B6 | IO05PDB0V0 |


| 484-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| B7 | GND |
| B8 | IO10NDB0V1 |
| B9 | IO13PDB0V1 |
| B10 | GND |
| B11 | IO17NDB1V0 |
| B12 | IO18NDB1V0 |
| B13 | GND |
| B14 | IO21NDB1V0 |
| B15 | IO21PDB1V0 |
| B16 | GND |
| B17 | GBC 1/IO26PDB1V1 |
| B18 | GBA1/IO28PDB1V1 |
| B19 | GND |
| B20 | $\mathrm{V}_{\text {CCPLB }}$ |
| B21 | GND |
| B22 | $\mathrm{V}_{\mathrm{CC}}$ |
| C1 | IO82PDB4V0 |
| C2 | NC |
| C3 | IOOONDBOVO |
| C4 | IOOOPDB0V0 |
| C5 | $\mathrm{V}_{\text {Cl }} \mathrm{BO}$ |
| C6 | IO06NDB0V0 |
| C7 | IO06PDB0V0 |
| C8 | $\mathrm{V}_{\text {CLI }} \mathrm{BO}$ |
| C9 | IO13NDB0V1 |
| C10 | IO11PDB0V1 |
| C11 | $\mathrm{V}_{\text {CII }} \mathrm{BO}^{\text {a }}$ |
| C12 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$ |
| C13 | IO20NDB1V0 |
| C14 | IO20PDB1V0 |
| C15 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$ |
| C16 | IO25NDB1V1 |
| C17 | GBB0/IO27NDB1V1 |
| C18 | $\mathrm{V}_{\mathrm{CCI}} 1$ |
| C19 | $V_{\text {COMPLB }}$ |
| C20 | GBA2/IO30PDB2V0 |

Fusion Family of Mixed-Signal Flash FPGAs

| 484-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| C21 | NC |
| C22 | GBB2/IO31PDB2V0 |
| D1 | IO82NDB4V0 |
| D2 | GND |
| D3 | IO83NDB4V0 |
| D4 | GAC2/IO83PDB4V0 |
| D5 | GAA2/IO85PDB4V0 |
| D6 | GAC0/IO03NDB0V0 |
| D7 | GAC 1/IO03PDB0V0 |
| D8 | IO09NDB0V1 |
| D9 | IO09PDB0V1 |
| D10 | IO11NDB0V1 |
| D11 | IO16NDB1V0 |
| D12 | IO16PDB1V0 |
| D13 | NC |
| D14 | IO23NDB1V1 |
| D15 | IO23PDB1V1 |
| D16 | IO25PDB1V1 |
| D17 | GBB1/IO27PDB1V1 |
| D18 | VMV2 |
| D19 | NC |
| D20 | IO30NDB2V0 |
| D21 | GND |
| D22 | IO31NDB2V0 |
| E1 | IO81NDB4V0 |
| E2 | IO81PDB4V0 |
| E3 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B4}$ |
| E4 | GAB2/IO84PDB4V0 |
| E5 | IO85NDB4V0 |
| E6 | GND |
| E7 | $\mathrm{V}_{\text {CII }} \mathrm{BO}$ |
| E8 | NC |
| E9 | NC |
| E10 | GND |
| E11 | IO15NDB1V0 |
| E12 | IO15PDB1V0 |


| 484-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| E13 | GND |
| E14 | NC |
| E15 | NC |
| E16 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$ |
| E17 | GND |
| E18 | NC |
| E19 | IO33PDB2V0 |
| E20 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$ |
| E21 | IO32NDB2V0 |
| E22 | GBC2/IO32PDB2V0 |
| F1 | IO80NDB4V0 |
| F2 | IO80PDB4V0 |
| F3 | NC |
| F4 | IO84NDB4V0 |
| F5 | GND |
| F6 | $\mathrm{V}_{\text {COMPLA }}$ |
| F7 | $V_{\text {CCPLA }}$ |
| F8 | VMV0 |
| F9 | IO08NDB0V1 |
| F10 | IO08PDB0V1 |
| F11 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$ |
| F12 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$ |
| F13 | IO22NDB1V0 |
| F14 | IO22PDB1V0 |
| F15 | VMV1 |
| F16 | NC |
| F17 | NC |
| F18 | GND |
| F19 | IO33NDB2V0 |
| F20 | IO34PDB2V0 |
| F21 | IO34NDB2V0 |
| F22 | IO35PDB2V0 |
| G1 | IO77PDB4V0 |
| G2 | GND |
| G3 | IO78NDB4V0 |
| G4 | IO78PDB4V0 |


| 484-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| G5 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B4}$ |
| G6 | NC |
| G7 | VMV4 |
| G8 | GND |
| G9 | IO04NDB0V0 |
| G10 | IO04PDB0V0 |
| G11 | IO12NDB0V1 |
| G12 | IO12PDB0V1 |
| G13 | NC |
| G14 | NC |
| G15 | GND |
| G16 | NC |
| G17 | NC |
| G18 | $\mathrm{V}_{\text {CCI }} 2$ |
| G19 | IO36PDB2V0 |
| G20 | IO36NDB2V0 |
| G21 | GND |
| G22 | IO35NDB2V0 |
| H1 | IO77NDB4V0 |
| H2 | IO76PDB4V0 |
| H3 | $\mathrm{V}_{\text {CLI }} \mathrm{B4}$ |
| H4 | IO79NDB4V0 |
| H5 | IO79PDB4V0 |
| H6 | NC |
| H7 | GND |
| H8 | $\mathrm{V}_{\mathrm{CC}}$ |
| H9 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$ |
| H10 | GND |
| H11 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$ |
| H12 | $\mathrm{V}_{\text {CCI }} 1$ |
| H13 | GND |
| H14 | $\mathrm{V}_{\text {CCI }} 1$ |
| H15 | GND |
| H16 | GND |
| H17 | NC |
| H18 | IO38PDB2V0 |


| 484-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| H19 | GCA2/IO39PDB2V0 |
| H20 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$ |
| H21 | IO37NDB2V0 |
| H22 | IO37PDB2V0 |
| $J 1$ | NC |
| $J 2$ | IO76NDB4V0 |
| J3 | GFB2/IO74PDB4V0 |
| $J 4$ | GFA2/IO75PDB4V0 |
| J5 | NC |
| J6 | NC |
| J7 | NC |
| J8 | $\mathrm{V}_{\text {CCI }} \mathrm{B4}$ |
| J9 | GND |
| J10 | $\mathrm{V}_{\mathrm{CC}}$ |
| $J 11$ | GND |
| $J 12$ | $\mathrm{V}_{\mathrm{CC}}$ |
| $J 13$ | GND |
| J14 | $\mathrm{V}_{\mathrm{CC}}$ |
| $J 15$ | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B2}$ |
| J16 | GCB2/IO40PDB2V0 |
| J17 | NC |
| $J 18$ | IO38NDB2V0 |
| J19 | IO39NDB2V0 |
| J20 | GCC2/IO41PDB2V0 |
| J21 | NC |
| J22 | IO42PDB2V0 |
| K1 | GFC2/IO73PDB4V0 |
| K2 | GND |
| K3 | IO74NDB4V0 |
| K4 | IO75NDB4V0 |
| K5 | GND |
| K6 | NC |
| K7 | NC |
| K8 | GND |
| K9 | $\mathrm{V}_{\text {CC }}$ |
| K10 | GND |


| 484-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| K11 | $\mathrm{V}_{\mathrm{CC}}$ |
| K12 | GND |
| K13 | $\mathrm{V}_{\mathrm{CC}}$ |
| K14 | GND |
| K15 | GND |
| K16 | IO40NDB2V0 |
| K17 | NC |
| K18 | GND |
| K19 | NC |
| K20 | IO41NDB2V0 |
| K21 | GND |
| K22 | IO42NDB2V0 |
| L1 | IO73NDB4V0 |
| L2 | $\mathrm{V}_{\text {coosc }}$ |
| L3 | $\mathrm{V}_{\text {CCI }} \mathrm{B4}$ |
| L4 | XTAL2 |
| L5 | GFC 1/IO72PDB4V0 |
| L6 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B4}$ |
| L7 | GFB1/IO71PDB4V0 |
| L8 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B4}$ |
| L9 | GND |
| L10 | $\mathrm{V}_{\mathrm{CC}}$ |
| L11 | GND |
| L12 | $\mathrm{V}_{\mathrm{CC}}$ |
| L13 | GND |
| L14 | $\mathrm{V}_{\mathrm{CC}}$ |
| L15 | $\mathrm{V}_{\text {CCI }} \mathrm{B}$ |
| L16 | IO48PDB2V0 |
| L17 | $\mathrm{V}_{\text {Cli }} \mathrm{B} 2$ |
| L18 | IO46PDB2V0 |
| L19 | GCA1/IO45PDB2V0 |
| L20 | $\mathrm{V}_{\mathrm{CcI}} \mathrm{B2}$ |
| L21 | GCC0/IO43NDB2V0 |
| L22 | GCC 1/IO43PDB2V0 |
| M1 | NC |
| M2 | XTAL1 |


| 484-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| M3 | $V_{\text {CCI }}{ }^{\text {B4 }}$ |
| M4 | GNDOSC |
| M5 | GFC0/IO72NDB4V0 |
| M6 | $V_{\text {CCI }}{ }^{\text {B4 }}$ |
| M7 | GFB0/IO71NDB4V0 |
| M8 | $\mathrm{V}_{\text {Clı }}{ }^{\text {B4 }}$ |
| M9 | $\mathrm{V}_{\mathrm{CC}}$ |
| M10 | GND |
| M11 | $\mathrm{V}_{\mathrm{CC}}$ |
| M12 | GND |
| M13 | $\mathrm{V}_{\mathrm{CC}}$ |
| M14 | GND |
| M15 | $\mathrm{V}_{\text {Cl }} \mathrm{B} 2$ |
| M16 | IO48NDB2V0 |
| M17 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B2}$ |
| M18 | IO46NDB2V0 |
| M19 | GCA0/IO45NDB2V0 |
| M20 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$ |
| M21 | GCB0/IO44NDB2V0 |
| M22 | GCB1/IO44PDB2V0 |
| N1 | NC |
| N2 | GND |
| N3 | IO68PDB4V0 |
| N4 | NC |
| N5 | GND |
| N6 | NC |
| N7 | NC |
| N8 | GND |
| N9 | GND |
| N10 | $\mathrm{V}_{\text {CC }}$ |
| N11 | GND |
| N12 | $\mathrm{V}_{\mathrm{CC}}$ |
| N13 | GND |
| N14 | $\mathrm{V}_{\mathrm{CC}}$ |
| N15 | GND |
| N16 | GDB2/IO56PDB2V0 |

Fusion Family of Mixed-Signal Flash FPGAs

| 484-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| N17 | NC |
| N18 | GND |
| N19 | IO47NDB2V0 |
| N20 | IO47PDB2V0 |
| N21 | GND |
| N22 | IO49PDB2V0 |
| P1 | GFA1/IO70PDB4V0 |
| P2 | GFA0/IO70NDB4V0 |
| P3 | IO68NDB4V0 |
| P4 | IO65PDB4V0 |
| P5 | IO65NDB4V0 |
| P6 | NC |
| P7 | NC |
| P8 | $\mathrm{V}_{\text {CII }} \mathrm{B}$ |
| P9 | $V_{\text {CC }}$ |
| P10 | GND |
| P11 | $\mathrm{V}_{\text {CC }}$ |
| P12 | GND |
| P13 | $\mathrm{V}_{\mathrm{CC}}$ |
| P14 | GND |
| P15 | $\mathrm{V}_{\text {CCI }} \mathrm{B} 2$ |
| P16 | IO56NDB2V0 |
| P17 | NC |
| P18 | GDA1/IO54PDB2V0 |
| P19 | GDB1/IO53PDB2V0 |
| P20 | IO51NDB2V0 |
| P21 | IO51PDB2V0 |
| P22 | IO49NDB2V0 |
| R1 | IO69PDB4V0 |
| R2 | IO69NDB4V0 |
| R3 | $\mathrm{V}_{\text {CII }} \mathrm{B4}$ |
| R4 | IO64PDB4V0 |
| R5 | IO64NDB4V0 |
| R6 | NC |
| R7 | GND |
| R8 | GND |


| 484-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| R9 | $V_{\text {CC33A }}$ |
| R10 | GNDA |
| R11 | $V_{\text {CC33A }}$ |
| R12 | GNDA |
| R13 | $V_{\text {CC33A }}$ |
| R14 | GNDA |
| R15 | $\mathrm{V}_{\text {CC }}$ |
| R16 | GND |
| R17 | NC |
| R18 | GDA0/IO54NDB2V0 |
| R19 | GDB0/IO53NDB2V0 |
| R20 | $\mathrm{V}_{\text {CII }} \mathrm{B}$ |
| R21 | IO50NDB2V0 |
| R22 | IO50PDB2V0 |
| T1 | NC |
| T2 | GND |
| T3 | IO66PDB4V0 |
| T4 | IO66NDB4V0 |
| T5 | $\mathrm{V}_{\mathrm{CCI}} \mathrm{B4}$ |
| T6 | NC |
| T7 | GNDNVM |
| T8 | GNDA |
| T9 | NC |
| T10 | AV4 |
| T11 | NC |
| T12 | AV5 |
| T13 | AC5 |
| T14 | NC |
| T15 | GNDA |
| T16 | NC |
| T17 | NC |
| T18 | $V_{\text {CCI }}{ }^{2}$ |
| T19 | IO55NDB2V0 |
| T20 | GDA2/IO55PDB2V0 |
| T21 | GND |
| T22 | GDC1/IO52PDB2V0 |


| 484-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| U1 | IO67PDB4V0 |
| U2 | IO67NDB4V0 |
| U3 | GEC 1/IO63PDB4V0 |
| U4 | GEC0/IO63NDB4V0 |
| U5 | GND |
| U6 | $\mathrm{V}_{\text {CCNVM }}$ |
| U7 | $\mathrm{V}_{\text {CCI }}{ }^{\text {B4 }}$ |
| U8 | $V_{\text {CC15A }}$ |
| U9 | GNDA |
| U10 | AC4 |
| U11 | $V_{\text {CC33A }}$ |
| U12 | GNDA |
| U13 | AG5 |
| U14 | GNDA |
| U15 | PUB |
| U16 | $\mathrm{V}_{\text {CLI }} 2$ |
| U17 | TDI |
| U18 | GND |
| U19 | IO57NDB2V0 |
| U20 | GDC2/IO57PDB2V0 |
| U21 | NC |
| U22 | GDC0/IO52NDB2V0 |
| V1 | GEB1/IO62PDB4V0 |
| V2 | GEB0/IO62NDB4V0 |
| V3 | $V_{C C I}{ }^{\text {B4 }}$ |
| V4 | GEA1/IO61PDB4V0 |
| V5 | GEA0/IO61NDB4V0 |
| V6 | GND |
| V7 | $\mathrm{V}_{\text {CC33PMP }}$ |
| V8 | NC |
| V9 | $V_{\text {CC33A }}$ |
| V10 | AG4 |
| V11 | AT4 |
| V12 | ATRTN2 |
| V13 | AT5 |
| V14 | $\mathrm{V}_{\text {CC33A }}$ |


| 484-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| V15 | NC |
| V16 | $\mathrm{V}_{\text {CC33A }}$ |
| V17 | GND |
| V18 | TMS |
| V19 | $\mathrm{V}_{\text {JTAG }}$ |
| V20 | $\mathrm{V}_{\text {CCI }} \mathrm{B} 2$ |
| V21 | TRST |
| V22 | TDO |
| W1 | NC |
| W2 | GND |
| W3 | NC |
| W4 | GEB2/IO59PDB4V0 |
| W5 | IO59NDB4V0 |
| W6 | AV0 |
| W7 | GNDA |
| W8 | AV1 |
| W9 | AV2 |
| W10 | GNDA |
| W11 | AV3 |
| W12 | AV6 |
| W13 | GNDA |
| W14 | AV7 |
| W15 | AV8 |
| W16 | GNDA |
| W17 | AV9 |
| W18 | VMV2 |
| W19 | NC |
| W20 | TCK |
| W21 | GND |
| W22 | NC |
| Y1 | GEC2/IO60PDB4V0 |
| Y2 | IO60NDB4V0 |
| Y3 | GEA2/IO58PDB4V0 |
| Y4 | IO58NDB4V0 |
| Y5 | NCAP |
| Y6 | AC0 |


| 484-Pin FBGA |  |
| :---: | :---: |
| Pin Number | AFS600 Function |
| Y 7 | $\mathrm{~V}_{\text {CC33A }}$ |
| Y 8 | AC1 |
| Y 9 | AC2 |
| Y 10 | $\mathrm{~V}_{\text {CC33A }}$ |
| Y 11 | AC3 |
| Y 12 | AC6 |
| Y 13 | $\mathrm{~V}_{\text {CC33A }}$ |
| Y 14 | AC7 |
| Y 15 | AC8 |
| Y 16 | $V_{\text {CC33A }}$ |
| Y 17 | AC9 |
| Y 18 | ADCGNDREF |
| Y 19 | PTBASE |
| Y 20 | GNDNVM |
| Y 21 | $V_{\text {CCNVM }}$ |
| Y 22 | $V_{\text {PUMP }}$ |

## 676-Pin FBGA



Figure 4-6 • 676-Pin FBGA (Bottom View)

## Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.
$\qquad$

## Datasheet Information

## List of Changes

The following table lists critical changes that were made in the current version of the document.

| Previous Version | Changes in Current Version (Advanced vo.7) | Page |
| :---: | :---: | :---: |
| Advanced v0.6 (October 2006) | The AFS1500-FG484 and AFS1500-FG676 user I/O counts were updated in the "Package I/Os: Single/Double-Ended (Analog)" table. | ii |
| Advanced v0.5 <br> (June 2006) | The second paragraph of the "PLL Macro" section was updated to include information about POWERDOWN. | 2-27 |
|  | The description for bit 0 was updated in Table 2-16 - RTC Control/Status Register. | 2-34 |
|  | 3.9 was changed to 7.8 in the "Crystal Oscillator (Xtal Osc)" section. | 2-35. |
|  | All function descriptions in Table 2-17 • Signals for VRPSM Macro. | 2-36 |
|  | In Table 2-18 • Flash Memory Block Pin Names, the RD[31:0] description was updated. | 2-38 |
|  | The "RESET" section was updated. | 2-53 |
|  | The "RESET" section was updated. | 2-55 |
|  | Table 2-33 • FIFO was updated. | 2-65 |
|  | The VAREF function description was updated in Table 2-34 • Analog Block Pin Description. | 2-67 |
|  | The "Voltage Monitor" section was updated to include information about low power mode and sleep mode. | 2-71 |
|  | The text in the "Current Monitor" section was changed from 2 mV to 1 mV . | 2-74 |
|  | The "Gate Driver" section was updated to include information about forcing 1 V on the drain. | 2-76 |
|  | The "Analog to Digital Converter Block" section was updated with the following statement: "All results are MSB justified in the ADC." | 2-80 |
|  | The information about the ADCSTART signal was updated in the "ADC Description" section. | 2-83 |
|  | Table 2-40 - Electrical Specifications was updated. | 2-86 |
|  | Table 2-41 • ADC Characteristics in Direct Input Mode was updated. | 2-88 |
|  | Table 2-42 • ACM Address Decode Table for Analog Quad was updated. | 2-89 |
|  | In Table 2-44 • Analog Quad ACM Byte Assignment, the Function and Default Setting for Bit 6 in Byte 3 was updated. | 2-92 |
|  | The "Introduction" section was updated to include information about digital inputs, outputs, and bibufs. | 2-95 |
|  | In Table 2-59 • Fusion Pro I/O Features, the programmable delay descriptions were updated for the following features: <br> - Single-ended receiver <br> - Voltage-referenced differential receiver <br> - LVDS/LVPECL differential receiver features | 2-99 |
|  | The "User I/O Naming Convention" section was updated to include "V" and "z" descriptions | 2-120 |

## Fusion Family of Mixed-Signal Flash FPGAs

| Previous Version | Changes in Current Version (Advanced vo.7) | Page |
| :---: | :---: | :---: |
| Advanced v0.5 (June 2006) | The " $V_{\text {CC33PMP }}$ Analog Power Supply ( 3.3 V ) " section was updated to include information about avoiding high current draw. | 2-168 |
|  | The " $\mathrm{V}_{\text {CCNVM }}$ Flash Memory Block Power Supply ( 1.5 V )" section was updated to include information about avoiding high current draw. | 2-168 |
|  | The "VMVx I/O Supply Voltage (quiet)" section was updated to include this statement: VMV and $\mathrm{V}_{\mathrm{CCI}}$ must be connected to the same power supply and $\mathrm{V}_{\mathrm{CCI}}$ pins within a given I/O bank. | 2-168 |
|  | The "PUB Power Up Bar" section was updated to include information about leaving the pin floating if it is not used. | 2-170 |
|  | The "PTBASE Pass Transistor Base" section was updated to include information about leaving the pin floating if it is not used. | 2-170 |
|  | The "PTEM Pass Transistor Emitter" section was updated to include information about leaving the pin floating if it is not used. | 2-170 |
|  | Table 3-3 • Required Conditions to Avoid Stress on Analog Input Pads is new. | 3-2 |
|  | The heading was incorrect in the "208-Pin PQFP" table. It should be AFS250 and not AFS090. | 4-9 |
| Advanced v0.4 <br> (April 2006) | The low power modes of operation were updated and clarified. | N/A |
|  | The AFS1500 digital I/O count was updated in Table 1 - Fusion Family. | i |
|  | The AFS1500 digital I/O count was updated in the "Package I/Os: Single/Double-Ended (Analog)" table. | ii |
|  | The "Voltage Regulator Power Supply Monitor (VRPSM)" section was updated. | 2-36 |
|  | Figure 2-45 • FlashROM Timing Diagram was updated. | 2-50 |
|  | The "256-Pin FBGA" table for the AFS1500 is new. | 4-23 |
| Advanced v0.3 <br> (April 2006) | The G was moved in the "Product Ordering Codes" section. | iii |
| Advanced v0.2 <br> (April 2006) | The "Features and Benefits" section was updated. | 1 |
|  | Table 1 - Fusion Family table was updated. | 1 |
|  | "Package I/Os: Single/Double-Ended (Analog)" section was updated. | ii |
|  | "Product Ordering Codes" section was updated. | iii |
|  | "Temperature Grade Offerings" section was updated. | iv |
|  | The "General Description" section was updated to include ARM information. | 1-1 |
|  | The "FlashROM" section was updated. | 2-50 |
|  | "RESET" section was updated. | 2-53 |
|  | "RESET" section was updated. | 2-55 |
|  | Figure 2-27 • Real-Time Counter System was updated. | 2-31 |
|  | Table 2-18 • Flash Memory Block Pin Names was updated. | 2-38 |
|  | Figure 2-32 • Flash Memory Block Diagram was updated to include AUX block information. | 2-39 |
|  | Figure 2-33 • Flash Memory Block Organization was updated to include AUX block information. | 2-40 |
|  | The note in the "Program Operation" section was updated. | 2-42 |


| Previous Version | Changes in Current Version (Advanced v0.7) | Page |
| :---: | :---: | :---: |
| Advanced v0.2 (continued) | Figure 2-69 - Gate Driver Example was updated. | 2-77 |
|  | The "Analog Quad ACM Description" section was updated. | 2-92 |
|  | Information about the maximum pad input frequency was added to the "Gate Driver" section. | 2-76 |
|  | Figure 2-61 - Analog Block Macro was updated. | 2-76 |
|  | Figure 2-61 - Analog Block Macro was updated. | 2-66 |
|  | The "Analog Quad" section was updated. | 2-69 |
|  | The "Voltage Monitor" section was updated. | 2-71 |
|  | The "Direct Digital Input" section was updated. | 2-73 |
|  | The "Current Monitor" section was updated. | 2-74 |
|  | Information about the maximum pad input frequency was added to the "Gate Driver" section. | 2-76 |
|  | The "Temperature Monitor" section was updated. | 2-78 |
|  | EQ 2-6 is new. | 2-83 |
|  | The "ADC Description" section was updated. | 2-83 |
|  | Figure 2-16 - Fusion Clocking Options was updated. | 2-18 |
|  | Table 2-40 - Electrical Specifications was updated. | 2-86 |
|  | The notes in Table 2-62 • Fusion Standard, LVDS, and Standard Plus Hot-Swap I/O Hot-Swap and 5 $\checkmark$ Input Tolerance Capabilities were updated. | 2-105 |
|  | The "Simultaneous Switching Outputs and Printed Circuit Board Layout" section is new. | 2-111 |
|  | LVPECL and LVDS were updated in Table 2-70 • Fusion Standard and LVDS I/O Attributes vs. I/O Standard Applications. | 2-118 |
|  | LVPECL and LVDS were updated in Table 2-71 • Fusion Pro l/O Atributes vs. I/O Standard Applications. | 2-118 |
|  | The "Timing Model" section was updated. | 2-122 |
|  | All voltage-referenced Minimum and Maximum DC Input and Output Level tables were updated. | N/A |
|  | All Timing Characteristic tables were updated | N/A |
|  | Table 2-73 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions was updated. | 2-126 |
|  | Table 2-77 - Summary of I/O Timing Characteristics - Software Default Settings was updated. | 2-129 |
|  | Table 2-79 - //O Output Buffer Maximum Resistances 1 was updated. | 2-130 |
|  | The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O standards included in the datasheet. | 2-155 |
|  | The "CoreMP7 Software Tools" section is new. | 2-171 |
|  | Table 3-8 • Quiescent Supply Current Characteristics (IDDQ)1 was updated. | 3-7 |
|  | Table 3-11 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices was updated. | 3-10 |
|  | Table 3-12 • Different Components Contributing to the Static Power Consumption in Fusion Devices was updated. | 3-11 |


| Previous Version | Changes in Current Version (Advanced vo.7) | Page |
| :---: | :--- | :---: |
| Advanced v0.2 <br> (continued) | The "Example of Power Calculation" section was updated. | $3-17$ |
|  | The Analog System information was deleted from Table 3-15 • Power Consumption. | $3-21$ |
|  | The "108-Pin QFN" table for the AFS090 device is new. | $4-2$ |
|  | The "180-Pin QFN" table for the AFS090 device is new. | $4-6$ |
|  | The "208-Pin PQFP" table for the AFS090 device is new. | $4-9$ |
|  | The "256-Pin FBGA" table for the AFS090 device is new. | $4-14$ |
|  | The "256-Pin FBGA" table for the AFS090 device is new. | $4-17$ |

## Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

## Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

## Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

## Unmarked (production)

This datasheet version contains information that is considered to be final.

## Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

## Export Administration Regulations (EAR)

The products described in this datasheet are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.actel.com

Actel Corporation
2061 Stierlin Court Mountain View, CA 94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.
River Court, Meadows Business Park Station Approach, Blackwater Camberley, Surrey GU17 9AB United Kingdom
Phone +44 (0) 1276609300
Fax +44 (0) 1276607540

## Actel Japan

EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
www.jp.actel.com

## Actel Hong Kong

Suite 2114, Two Pacific Place 88 Queensway, Admiralty
Hong Kong
Phone +852 21856460
Fax +852 21856488
www.actel.com.cn


[^0]:    Figure 2-7 • Array Coordinates for AFS600

[^1]:    Figure 2-31 • Flash Memory Block

[^2]:    Figure 2-42 • FB Discard Page Waveform

[^3]:    Figure 2-72 • ADC Block Diagram

[^4]:    Figure 2-79 • Solution 1

[^5]:    Figure 2-89 • Naming Conventions of Fusion Devices with Three Digital I/O Banks

[^6]:    Figure 3-1 • $\mathbf{I} / \mathbf{O}$ State as a Function of $\mathbf{V}_{\mathrm{CCI}}$ and $\mathbf{V}_{\mathrm{CC}}$ Voltage Levels

[^7]:    1. The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula output clock by adding its corresponding contribution ( $P_{\text {AC14 }}$ * $F_{\text {CLKOUT }}$ product) to the total PLL contribution.
